linuxdebug/drivers/net/ethernet/intel/fm10k/fm10k_iov.c

701 lines
19 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2019 Intel Corporation. */
#include "fm10k.h"
#include "fm10k_vf.h"
#include "fm10k_pf.h"
static s32 fm10k_iov_msg_error(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
struct fm10k_intfc *interface = hw->back;
struct pci_dev *pdev = interface->pdev;
dev_err(&pdev->dev, "Unknown message ID %u on VF %d\n",
**results & FM10K_TLV_ID_MASK, vf_info->vf_idx);
return fm10k_tlv_msg_error(hw, results, mbx);
}
/**
* fm10k_iov_msg_queue_mac_vlan - Message handler for MAC/VLAN request from VF
* @hw: Pointer to hardware structure
* @results: Pointer array to message, results[0] is pointer to message
* @mbx: Pointer to mailbox information structure
*
* This function is a custom handler for MAC/VLAN requests from the VF. The
* assumption is that it is acceptable to directly hand off the message from
* the VF to the PF's switch manager. However, we use a MAC/VLAN message
* queue to avoid overloading the mailbox when a large number of requests
* come in.
**/
static s32 fm10k_iov_msg_queue_mac_vlan(struct fm10k_hw *hw, u32 **results,
struct fm10k_mbx_info *mbx)
{
struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
struct fm10k_intfc *interface = hw->back;
u8 mac[ETH_ALEN];
u32 *result;
int err = 0;
bool set;
u16 vlan;
u32 vid;
/* we shouldn't be updating rules on a disabled interface */
if (!FM10K_VF_FLAG_ENABLED(vf_info))
err = FM10K_ERR_PARAM;
if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
result = results[FM10K_MAC_VLAN_MSG_VLAN];
/* record VLAN id requested */
err = fm10k_tlv_attr_get_u32(result, &vid);
if (err)
return err;
set = !(vid & FM10K_VLAN_CLEAR);
vid &= ~FM10K_VLAN_CLEAR;
/* if the length field has been set, this is a multi-bit
* update request. For multi-bit requests, simply disallow
* them when the pf_vid has been set. In this case, the PF
* should have already cleared the VLAN_TABLE, and if we
* allowed them, it could allow a rogue VF to receive traffic
* on a VLAN it was not assigned. In the single-bit case, we
* need to modify requests for VLAN 0 to use the default PF or
* SW vid when assigned.
*/
if (vid >> 16) {
/* prevent multi-bit requests when PF has
* administratively set the VLAN for this VF
*/
if (vf_info->pf_vid)
return FM10K_ERR_PARAM;
} else {
err = fm10k_iov_select_vid(vf_info, (u16)vid);
if (err < 0)
return err;
vid = err;
}
/* update VSI info for VF in regards to VLAN table */
err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
}
if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
result = results[FM10K_MAC_VLAN_MSG_MAC];
/* record unicast MAC address requested */
err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
if (err)
return err;
/* block attempts to set MAC for a locked device */
if (is_valid_ether_addr(vf_info->mac) &&
!ether_addr_equal(mac, vf_info->mac))
return FM10K_ERR_PARAM;
set = !(vlan & FM10K_VLAN_CLEAR);
vlan &= ~FM10K_VLAN_CLEAR;
err = fm10k_iov_select_vid(vf_info, vlan);
if (err < 0)
return err;
vlan = (u16)err;
/* Add this request to the MAC/VLAN queue */
err = fm10k_queue_mac_request(interface, vf_info->glort,
mac, vlan, set);
}
if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
/* record multicast MAC address requested */
err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
if (err)
return err;
/* verify that the VF is allowed to request multicast */
if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
return FM10K_ERR_PARAM;
set = !(vlan & FM10K_VLAN_CLEAR);
vlan &= ~FM10K_VLAN_CLEAR;
err = fm10k_iov_select_vid(vf_info, vlan);
if (err < 0)
return err;
vlan = (u16)err;
/* Add this request to the MAC/VLAN queue */
err = fm10k_queue_mac_request(interface, vf_info->glort,
mac, vlan, set);
}
return err;
}
static const struct fm10k_msg_data iov_mbx_data[] = {
FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_queue_mac_vlan),
FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_iov_msg_error),
};
s32 fm10k_iov_event(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
struct fm10k_iov_data *iov_data;
s64 vflre;
int i;
/* if there is no iov_data then there is no mailbox to process */
if (!READ_ONCE(interface->iov_data))
return 0;
rcu_read_lock();
iov_data = interface->iov_data;
/* check again now that we are in the RCU block */
if (!iov_data)
goto read_unlock;
if (!(fm10k_read_reg(hw, FM10K_EICR) & FM10K_EICR_VFLR))
goto read_unlock;
/* read VFLRE to determine if any VFs have been reset */
vflre = fm10k_read_reg(hw, FM10K_PFVFLRE(1));
vflre <<= 32;
vflre |= fm10k_read_reg(hw, FM10K_PFVFLRE(0));
i = iov_data->num_vfs;
for (vflre <<= 64 - i; vflre && i--; vflre += vflre) {
struct fm10k_vf_info *vf_info = &iov_data->vf_info[i];
if (vflre >= 0)
continue;
hw->iov.ops.reset_resources(hw, vf_info);
vf_info->mbx.ops.connect(hw, &vf_info->mbx);
}
read_unlock:
rcu_read_unlock();
return 0;
}
s32 fm10k_iov_mbx(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
struct fm10k_iov_data *iov_data;
int i;
/* if there is no iov_data then there is no mailbox to process */
if (!READ_ONCE(interface->iov_data))
return 0;
rcu_read_lock();
iov_data = interface->iov_data;
/* check again now that we are in the RCU block */
if (!iov_data)
goto read_unlock;
/* lock the mailbox for transmit and receive */
fm10k_mbx_lock(interface);
/* Most VF messages sent to the PF cause the PF to respond by
* requesting from the SM mailbox. This means that too many VF
* messages processed at once could cause a mailbox timeout on the PF.
* To prevent this, store a pointer to the next VF mbx to process. Use
* that as the start of the loop so that we don't starve whichever VF
* got ignored on the previous run.
*/
process_mbx:
for (i = iov_data->next_vf_mbx ? : iov_data->num_vfs; i--;) {
struct fm10k_vf_info *vf_info = &iov_data->vf_info[i];
struct fm10k_mbx_info *mbx = &vf_info->mbx;
u16 glort = vf_info->glort;
/* process the SM mailbox first to drain outgoing messages */
hw->mbx.ops.process(hw, &hw->mbx);
/* verify port mapping is valid, if not reset port */
if (vf_info->vf_flags && !fm10k_glort_valid_pf(hw, glort)) {
hw->iov.ops.reset_lport(hw, vf_info);
fm10k_clear_macvlan_queue(interface, glort, false);
}
/* reset VFs that have mailbox timed out */
if (!mbx->timeout) {
hw->iov.ops.reset_resources(hw, vf_info);
mbx->ops.connect(hw, mbx);
}
/* guarantee we have free space in the SM mailbox */
if (hw->mbx.state == FM10K_STATE_OPEN &&
!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU)) {
/* keep track of how many times this occurs */
interface->hw_sm_mbx_full++;
/* make sure we try again momentarily */
fm10k_service_event_schedule(interface);
break;
}
/* cleanup mailbox and process received messages */
mbx->ops.process(hw, mbx);
}
/* if we stopped processing mailboxes early, update next_vf_mbx.
* Otherwise, reset next_vf_mbx, and restart loop so that we process
* the remaining mailboxes we skipped at the start.
*/
if (i >= 0) {
iov_data->next_vf_mbx = i + 1;
} else if (iov_data->next_vf_mbx) {
iov_data->next_vf_mbx = 0;
goto process_mbx;
}
/* free the lock */
fm10k_mbx_unlock(interface);
read_unlock:
rcu_read_unlock();
return 0;
}
void fm10k_iov_suspend(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
int num_vfs, i;
/* pull out num_vfs from iov_data */
num_vfs = iov_data ? iov_data->num_vfs : 0;
/* shut down queue mapping for VFs */
fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_vf_rss),
FM10K_DGLORTMAP_NONE);
/* Stop any active VFs and reset their resources */
for (i = 0; i < num_vfs; i++) {
struct fm10k_vf_info *vf_info = &iov_data->vf_info[i];
hw->iov.ops.reset_resources(hw, vf_info);
hw->iov.ops.reset_lport(hw, vf_info);
fm10k_clear_macvlan_queue(interface, vf_info->glort, false);
}
}
static void fm10k_mask_aer_comp_abort(struct pci_dev *pdev)
{
u32 err_mask;
int pos;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
if (!pos)
return;
/* Mask the completion abort bit in the ERR_UNCOR_MASK register,
* preventing the device from reporting these errors to the upstream
* PCIe root device. This avoids bringing down platforms which upgrade
* non-fatal completer aborts into machine check exceptions. Completer
* aborts can occur whenever a VF reads a queue it doesn't own.
*/
pci_read_config_dword(pdev, pos + PCI_ERR_UNCOR_MASK, &err_mask);
err_mask |= PCI_ERR_UNC_COMP_ABORT;
pci_write_config_dword(pdev, pos + PCI_ERR_UNCOR_MASK, err_mask);
}
int fm10k_iov_resume(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
int num_vfs, i;
/* pull out num_vfs from iov_data */
num_vfs = iov_data ? iov_data->num_vfs : 0;
/* return error if iov_data is not already populated */
if (!iov_data)
return -ENOMEM;
/* Lower severity of completer abort error reporting as
* the VFs can trigger this any time they read a queue
* that they don't own.
*/
fm10k_mask_aer_comp_abort(pdev);
/* allocate hardware resources for the VFs */
hw->iov.ops.assign_resources(hw, num_vfs, num_vfs);
/* configure DGLORT mapping for RSS */
dglort.glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
dglort.idx = fm10k_dglort_vf_rss;
dglort.inner_rss = 1;
dglort.rss_l = fls(fm10k_queues_per_pool(hw) - 1);
dglort.queue_b = fm10k_vf_queue_index(hw, 0);
dglort.vsi_l = fls(hw->iov.total_vfs - 1);
dglort.vsi_b = 1;
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* assign resources to the device */
for (i = 0; i < num_vfs; i++) {
struct fm10k_vf_info *vf_info = &iov_data->vf_info[i];
/* allocate all but the last GLORT to the VFs */
if (i == (~hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT))
break;
/* assign GLORT to VF, and restrict it to multicast */
hw->iov.ops.set_lport(hw, vf_info, i,
FM10K_VF_FLAG_MULTI_CAPABLE);
/* mailbox is disconnected so we don't send a message */
hw->iov.ops.assign_default_mac_vlan(hw, vf_info);
/* now we are ready so we can connect */
vf_info->mbx.ops.connect(hw, &vf_info->mbx);
}
return 0;
}
s32 fm10k_iov_update_pvid(struct fm10k_intfc *interface, u16 glort, u16 pvid)
{
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_vf_info *vf_info;
u16 vf_idx = (glort - hw->mac.dglort_map) & FM10K_DGLORTMAP_NONE;
/* no IOV support, not our message to process */
if (!iov_data)
return FM10K_ERR_PARAM;
/* glort outside our range, not our message to process */
if (vf_idx >= iov_data->num_vfs)
return FM10K_ERR_PARAM;
/* determine if an update has occurred and if so notify the VF */
vf_info = &iov_data->vf_info[vf_idx];
if (vf_info->sw_vid != pvid) {
vf_info->sw_vid = pvid;
hw->iov.ops.assign_default_mac_vlan(hw, vf_info);
}
return 0;
}
static void fm10k_iov_free_data(struct pci_dev *pdev)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
if (!interface->iov_data)
return;
/* reclaim hardware resources */
fm10k_iov_suspend(pdev);
/* drop iov_data from interface */
kfree_rcu(interface->iov_data, rcu);
interface->iov_data = NULL;
}
static s32 fm10k_iov_alloc_data(struct pci_dev *pdev, int num_vfs)
{
struct fm10k_intfc *interface = pci_get_drvdata(pdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
size_t size;
int i;
/* return error if iov_data is already populated */
if (iov_data)
return -EBUSY;
/* The PF should always be able to assign resources */
if (!hw->iov.ops.assign_resources)
return -ENODEV;
/* nothing to do if no VFs are requested */
if (!num_vfs)
return 0;
/* allocate memory for VF storage */
size = offsetof(struct fm10k_iov_data, vf_info[num_vfs]);
iov_data = kzalloc(size, GFP_KERNEL);
if (!iov_data)
return -ENOMEM;
/* record number of VFs */
iov_data->num_vfs = num_vfs;
/* loop through vf_info structures initializing each entry */
for (i = 0; i < num_vfs; i++) {
struct fm10k_vf_info *vf_info = &iov_data->vf_info[i];
int err;
/* Record VF VSI value */
vf_info->vsi = i + 1;
vf_info->vf_idx = i;
/* initialize mailbox memory */
err = fm10k_pfvf_mbx_init(hw, &vf_info->mbx, iov_mbx_data, i);
if (err) {
dev_err(&pdev->dev,
"Unable to initialize SR-IOV mailbox\n");
kfree(iov_data);
return err;
}
}
/* assign iov_data to interface */
interface->iov_data = iov_data;
/* allocate hardware resources for the VFs */
fm10k_iov_resume(pdev);
return 0;
}
void fm10k_iov_disable(struct pci_dev *pdev)
{
if (pci_num_vf(pdev) && pci_vfs_assigned(pdev))
dev_err(&pdev->dev,
"Cannot disable SR-IOV while VFs are assigned\n");
else
pci_disable_sriov(pdev);
fm10k_iov_free_data(pdev);
}
int fm10k_iov_configure(struct pci_dev *pdev, int num_vfs)
{
int current_vfs = pci_num_vf(pdev);
int err = 0;
if (current_vfs && pci_vfs_assigned(pdev)) {
dev_err(&pdev->dev,
"Cannot modify SR-IOV while VFs are assigned\n");
num_vfs = current_vfs;
} else {
pci_disable_sriov(pdev);
fm10k_iov_free_data(pdev);
}
/* allocate resources for the VFs */
err = fm10k_iov_alloc_data(pdev, num_vfs);
if (err)
return err;
/* allocate VFs if not already allocated */
if (num_vfs && num_vfs != current_vfs) {
err = pci_enable_sriov(pdev, num_vfs);
if (err) {
dev_err(&pdev->dev,
"Enable PCI SR-IOV failed: %d\n", err);
return err;
}
}
return num_vfs;
}
/**
* fm10k_iov_update_stats - Update stats for all VFs
* @interface: device private structure
*
* Updates the VF statistics for all enabled VFs. Expects to be called by
* fm10k_update_stats and assumes that locking via the __FM10K_UPDATING_STATS
* bit is already handled.
*/
void fm10k_iov_update_stats(struct fm10k_intfc *interface)
{
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
int i;
if (!iov_data)
return;
for (i = 0; i < iov_data->num_vfs; i++)
hw->iov.ops.update_stats(hw, iov_data->vf_info[i].stats, i);
}
static inline void fm10k_reset_vf_info(struct fm10k_intfc *interface,
struct fm10k_vf_info *vf_info)
{
struct fm10k_hw *hw = &interface->hw;
/* assigning the MAC address will send a mailbox message */
fm10k_mbx_lock(interface);
/* disable LPORT for this VF which clears switch rules */
hw->iov.ops.reset_lport(hw, vf_info);
fm10k_clear_macvlan_queue(interface, vf_info->glort, false);
/* assign new MAC+VLAN for this VF */
hw->iov.ops.assign_default_mac_vlan(hw, vf_info);
/* re-enable the LPORT for this VF */
hw->iov.ops.set_lport(hw, vf_info, vf_info->vf_idx,
FM10K_VF_FLAG_MULTI_CAPABLE);
fm10k_mbx_unlock(interface);
}
int fm10k_ndo_set_vf_mac(struct net_device *netdev, int vf_idx, u8 *mac)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_vf_info *vf_info;
/* verify SR-IOV is active and that vf idx is valid */
if (!iov_data || vf_idx >= iov_data->num_vfs)
return -EINVAL;
/* verify MAC addr is valid */
if (!is_zero_ether_addr(mac) && !is_valid_ether_addr(mac))
return -EINVAL;
/* record new MAC address */
vf_info = &iov_data->vf_info[vf_idx];
ether_addr_copy(vf_info->mac, mac);
fm10k_reset_vf_info(interface, vf_info);
return 0;
}
int fm10k_ndo_set_vf_vlan(struct net_device *netdev, int vf_idx, u16 vid,
u8 qos, __be16 vlan_proto)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_vf_info *vf_info;
/* verify SR-IOV is active and that vf idx is valid */
if (!iov_data || vf_idx >= iov_data->num_vfs)
return -EINVAL;
/* QOS is unsupported and VLAN IDs accepted range 0-4094 */
if (qos || (vid > (VLAN_VID_MASK - 1)))
return -EINVAL;
/* VF VLAN Protocol part to default is unsupported */
if (vlan_proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
vf_info = &iov_data->vf_info[vf_idx];
/* exit if there is nothing to do */
if (vf_info->pf_vid == vid)
return 0;
/* record default VLAN ID for VF */
vf_info->pf_vid = vid;
/* Clear the VLAN table for the VF */
hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, vf_info->vsi, false);
fm10k_reset_vf_info(interface, vf_info);
return 0;
}
int fm10k_ndo_set_vf_bw(struct net_device *netdev, int vf_idx,
int __always_unused min_rate, int max_rate)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
/* verify SR-IOV is active and that vf idx is valid */
if (!iov_data || vf_idx >= iov_data->num_vfs)
return -EINVAL;
/* rate limit cannot be less than 10Mbs or greater than link speed */
if (max_rate &&
(max_rate < FM10K_VF_TC_MIN || max_rate > FM10K_VF_TC_MAX))
return -EINVAL;
/* store values */
iov_data->vf_info[vf_idx].rate = max_rate;
/* update hardware configuration */
hw->iov.ops.configure_tc(hw, vf_idx, max_rate);
return 0;
}
int fm10k_ndo_get_vf_config(struct net_device *netdev,
int vf_idx, struct ifla_vf_info *ivi)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_vf_info *vf_info;
/* verify SR-IOV is active and that vf idx is valid */
if (!iov_data || vf_idx >= iov_data->num_vfs)
return -EINVAL;
vf_info = &iov_data->vf_info[vf_idx];
ivi->vf = vf_idx;
ivi->max_tx_rate = vf_info->rate;
ivi->min_tx_rate = 0;
ether_addr_copy(ivi->mac, vf_info->mac);
ivi->vlan = vf_info->pf_vid;
ivi->qos = 0;
return 0;
}
int fm10k_ndo_get_vf_stats(struct net_device *netdev,
int vf_idx, struct ifla_vf_stats *stats)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_iov_data *iov_data = interface->iov_data;
struct fm10k_hw *hw = &interface->hw;
struct fm10k_hw_stats_q *hw_stats;
u32 idx, qpp;
/* verify SR-IOV is active and that vf idx is valid */
if (!iov_data || vf_idx >= iov_data->num_vfs)
return -EINVAL;
qpp = fm10k_queues_per_pool(hw);
hw_stats = iov_data->vf_info[vf_idx].stats;
for (idx = 0; idx < qpp; idx++) {
stats->rx_packets += hw_stats[idx].rx_packets.count;
stats->tx_packets += hw_stats[idx].tx_packets.count;
stats->rx_bytes += hw_stats[idx].rx_bytes.count;
stats->tx_bytes += hw_stats[idx].tx_bytes.count;
stats->rx_dropped += hw_stats[idx].rx_drops.count;
}
return 0;
}