linuxdebug/drivers/net/ethernet/marvell/octeontx2/af/rvu.c

3424 lines
84 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Marvell RVU Admin Function driver
*
* Copyright (C) 2018 Marvell.
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/sysfs.h>
#include "cgx.h"
#include "rvu.h"
#include "rvu_reg.h"
#include "ptp.h"
#include "mcs.h"
#include "rvu_trace.h"
#include "rvu_npc_hash.h"
#define DRV_NAME "rvu_af"
#define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver"
static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct rvu_block *block, int lf);
static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct rvu_block *block, int lf);
static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
int type, int num,
void (mbox_handler)(struct work_struct *),
void (mbox_up_handler)(struct work_struct *));
enum {
TYPE_AFVF,
TYPE_AFPF,
};
/* Supported devices */
static const struct pci_device_id rvu_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
{ 0, } /* end of table */
};
MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
MODULE_DESCRIPTION(DRV_STRING);
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(pci, rvu_id_table);
static char *mkex_profile; /* MKEX profile name */
module_param(mkex_profile, charp, 0000);
MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
static char *kpu_profile; /* KPU profile name */
module_param(kpu_profile, charp, 0000);
MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
static void rvu_setup_hw_capabilities(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
hw->cap.nix_fixed_txschq_mapping = false;
hw->cap.nix_shaping = true;
hw->cap.nix_tx_link_bp = true;
hw->cap.nix_rx_multicast = true;
hw->cap.nix_shaper_toggle_wait = false;
hw->cap.npc_hash_extract = false;
hw->cap.npc_exact_match_enabled = false;
hw->rvu = rvu;
if (is_rvu_pre_96xx_C0(rvu)) {
hw->cap.nix_fixed_txschq_mapping = true;
hw->cap.nix_txsch_per_cgx_lmac = 4;
hw->cap.nix_txsch_per_lbk_lmac = 132;
hw->cap.nix_txsch_per_sdp_lmac = 76;
hw->cap.nix_shaping = false;
hw->cap.nix_tx_link_bp = false;
if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
hw->cap.nix_rx_multicast = false;
}
if (!is_rvu_pre_96xx_C0(rvu))
hw->cap.nix_shaper_toggle_wait = true;
if (!is_rvu_otx2(rvu))
hw->cap.per_pf_mbox_regs = true;
if (is_rvu_npc_hash_extract_en(rvu))
hw->cap.npc_hash_extract = true;
}
/* Poll a RVU block's register 'offset', for a 'zero'
* or 'nonzero' at bits specified by 'mask'
*/
int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
{
unsigned long timeout = jiffies + usecs_to_jiffies(20000);
bool twice = false;
void __iomem *reg;
u64 reg_val;
reg = rvu->afreg_base + ((block << 28) | offset);
again:
reg_val = readq(reg);
if (zero && !(reg_val & mask))
return 0;
if (!zero && (reg_val & mask))
return 0;
if (time_before(jiffies, timeout)) {
usleep_range(1, 5);
goto again;
}
/* In scenarios where CPU is scheduled out before checking
* 'time_before' (above) and gets scheduled in such that
* jiffies are beyond timeout value, then check again if HW is
* done with the operation in the meantime.
*/
if (!twice) {
twice = true;
goto again;
}
return -EBUSY;
}
int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
{
int id;
if (!rsrc->bmap)
return -EINVAL;
id = find_first_zero_bit(rsrc->bmap, rsrc->max);
if (id >= rsrc->max)
return -ENOSPC;
__set_bit(id, rsrc->bmap);
return id;
}
int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
{
int start;
if (!rsrc->bmap)
return -EINVAL;
start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
if (start >= rsrc->max)
return -ENOSPC;
bitmap_set(rsrc->bmap, start, nrsrc);
return start;
}
static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
{
if (!rsrc->bmap)
return;
if (start >= rsrc->max)
return;
bitmap_clear(rsrc->bmap, start, nrsrc);
}
bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
{
int start;
if (!rsrc->bmap)
return false;
start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
if (start >= rsrc->max)
return false;
return true;
}
void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
{
if (!rsrc->bmap)
return;
__clear_bit(id, rsrc->bmap);
}
int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
{
int used;
if (!rsrc->bmap)
return 0;
used = bitmap_weight(rsrc->bmap, rsrc->max);
return (rsrc->max - used);
}
bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
{
if (!rsrc->bmap)
return false;
return !test_bit(id, rsrc->bmap);
}
int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
{
rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
sizeof(long), GFP_KERNEL);
if (!rsrc->bmap)
return -ENOMEM;
return 0;
}
void rvu_free_bitmap(struct rsrc_bmap *rsrc)
{
kfree(rsrc->bmap);
}
/* Get block LF's HW index from a PF_FUNC's block slot number */
int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
{
u16 match = 0;
int lf;
mutex_lock(&rvu->rsrc_lock);
for (lf = 0; lf < block->lf.max; lf++) {
if (block->fn_map[lf] == pcifunc) {
if (slot == match) {
mutex_unlock(&rvu->rsrc_lock);
return lf;
}
match++;
}
}
mutex_unlock(&rvu->rsrc_lock);
return -ENODEV;
}
/* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
* Some silicon variants of OcteonTX2 supports
* multiple blocks of same type.
*
* @pcifunc has to be zero when no LF is yet attached.
*
* For a pcifunc if LFs are attached from multiple blocks of same type, then
* return blkaddr of first encountered block.
*/
int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
{
int devnum, blkaddr = -ENODEV;
u64 cfg, reg;
bool is_pf;
switch (blktype) {
case BLKTYPE_NPC:
blkaddr = BLKADDR_NPC;
goto exit;
case BLKTYPE_NPA:
blkaddr = BLKADDR_NPA;
goto exit;
case BLKTYPE_NIX:
/* For now assume NIX0 */
if (!pcifunc) {
blkaddr = BLKADDR_NIX0;
goto exit;
}
break;
case BLKTYPE_SSO:
blkaddr = BLKADDR_SSO;
goto exit;
case BLKTYPE_SSOW:
blkaddr = BLKADDR_SSOW;
goto exit;
case BLKTYPE_TIM:
blkaddr = BLKADDR_TIM;
goto exit;
case BLKTYPE_CPT:
/* For now assume CPT0 */
if (!pcifunc) {
blkaddr = BLKADDR_CPT0;
goto exit;
}
break;
}
/* Check if this is a RVU PF or VF */
if (pcifunc & RVU_PFVF_FUNC_MASK) {
is_pf = false;
devnum = rvu_get_hwvf(rvu, pcifunc);
} else {
is_pf = true;
devnum = rvu_get_pf(pcifunc);
}
/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
* 'BLKADDR_NIX1'.
*/
if (blktype == BLKTYPE_NIX) {
reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
RVU_PRIV_HWVFX_NIXX_CFG(0);
cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
if (cfg) {
blkaddr = BLKADDR_NIX0;
goto exit;
}
reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
RVU_PRIV_HWVFX_NIXX_CFG(1);
cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
if (cfg)
blkaddr = BLKADDR_NIX1;
}
if (blktype == BLKTYPE_CPT) {
reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
RVU_PRIV_HWVFX_CPTX_CFG(0);
cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
if (cfg) {
blkaddr = BLKADDR_CPT0;
goto exit;
}
reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
RVU_PRIV_HWVFX_CPTX_CFG(1);
cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
if (cfg)
blkaddr = BLKADDR_CPT1;
}
exit:
if (is_block_implemented(rvu->hw, blkaddr))
return blkaddr;
return -ENODEV;
}
static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct rvu_block *block, u16 pcifunc,
u16 lf, bool attach)
{
int devnum, num_lfs = 0;
bool is_pf;
u64 reg;
if (lf >= block->lf.max) {
dev_err(&rvu->pdev->dev,
"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
__func__, lf, block->name, block->lf.max);
return;
}
/* Check if this is for a RVU PF or VF */
if (pcifunc & RVU_PFVF_FUNC_MASK) {
is_pf = false;
devnum = rvu_get_hwvf(rvu, pcifunc);
} else {
is_pf = true;
devnum = rvu_get_pf(pcifunc);
}
block->fn_map[lf] = attach ? pcifunc : 0;
switch (block->addr) {
case BLKADDR_NPA:
pfvf->npalf = attach ? true : false;
num_lfs = pfvf->npalf;
break;
case BLKADDR_NIX0:
case BLKADDR_NIX1:
pfvf->nixlf = attach ? true : false;
num_lfs = pfvf->nixlf;
break;
case BLKADDR_SSO:
attach ? pfvf->sso++ : pfvf->sso--;
num_lfs = pfvf->sso;
break;
case BLKADDR_SSOW:
attach ? pfvf->ssow++ : pfvf->ssow--;
num_lfs = pfvf->ssow;
break;
case BLKADDR_TIM:
attach ? pfvf->timlfs++ : pfvf->timlfs--;
num_lfs = pfvf->timlfs;
break;
case BLKADDR_CPT0:
attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
num_lfs = pfvf->cptlfs;
break;
case BLKADDR_CPT1:
attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
num_lfs = pfvf->cpt1_lfs;
break;
}
reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
}
inline int rvu_get_pf(u16 pcifunc)
{
return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
}
void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
{
u64 cfg;
/* Get numVFs attached to this PF and first HWVF */
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
if (numvfs)
*numvfs = (cfg >> 12) & 0xFF;
if (hwvf)
*hwvf = cfg & 0xFFF;
}
int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
{
int pf, func;
u64 cfg;
pf = rvu_get_pf(pcifunc);
func = pcifunc & RVU_PFVF_FUNC_MASK;
/* Get first HWVF attached to this PF */
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
return ((cfg & 0xFFF) + func - 1);
}
struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
{
/* Check if it is a PF or VF */
if (pcifunc & RVU_PFVF_FUNC_MASK)
return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
else
return &rvu->pf[rvu_get_pf(pcifunc)];
}
static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
{
int pf, vf, nvfs;
u64 cfg;
pf = rvu_get_pf(pcifunc);
if (pf >= rvu->hw->total_pfs)
return false;
if (!(pcifunc & RVU_PFVF_FUNC_MASK))
return true;
/* Check if VF is within number of VFs attached to this PF */
vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
nvfs = (cfg >> 12) & 0xFF;
if (vf >= nvfs)
return false;
return true;
}
bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
{
struct rvu_block *block;
if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
return false;
block = &hw->block[blkaddr];
return block->implemented;
}
static void rvu_check_block_implemented(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int blkid;
u64 cfg;
/* For each block check if 'implemented' bit is set */
for (blkid = 0; blkid < BLK_COUNT; blkid++) {
block = &hw->block[blkid];
cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
if (cfg & BIT_ULL(11))
block->implemented = true;
}
}
static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
{
rvu_write64(rvu, BLKADDR_RVUM,
RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
RVU_BLK_RVUM_REVID);
}
static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
{
rvu_write64(rvu, BLKADDR_RVUM,
RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
}
int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
{
int err;
if (!block->implemented)
return 0;
rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
true);
return err;
}
static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
{
struct rvu_block *block = &rvu->hw->block[blkaddr];
int err;
if (!block->implemented)
return;
rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
if (err) {
dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
;
}
}
static void rvu_reset_all_blocks(struct rvu *rvu)
{
/* Do a HW reset of all RVU blocks */
rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
}
static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
{
struct rvu_pfvf *pfvf;
u64 cfg;
int lf;
for (lf = 0; lf < block->lf.max; lf++) {
cfg = rvu_read64(rvu, block->addr,
block->lfcfg_reg | (lf << block->lfshift));
if (!(cfg & BIT_ULL(63)))
continue;
/* Set this resource as being used */
__set_bit(lf, block->lf.bmap);
/* Get, to whom this LF is attached */
pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
rvu_update_rsrc_map(rvu, pfvf, block,
(cfg >> 8) & 0xFFFF, lf, true);
/* Set start MSIX vector for this LF within this PF/VF */
rvu_set_msix_offset(rvu, pfvf, block, lf);
}
}
static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
{
int min_vecs;
if (!vf)
goto check_pf;
if (!nvecs) {
dev_warn(rvu->dev,
"PF%d:VF%d is configured with zero msix vectors, %d\n",
pf, vf - 1, nvecs);
}
return;
check_pf:
if (pf == 0)
min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
else
min_vecs = RVU_PF_INT_VEC_CNT;
if (!(nvecs < min_vecs))
return;
dev_warn(rvu->dev,
"PF%d is configured with too few vectors, %d, min is %d\n",
pf, nvecs, min_vecs);
}
static int rvu_setup_msix_resources(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
int pf, vf, numvfs, hwvf, err;
int nvecs, offset, max_msix;
struct rvu_pfvf *pfvf;
u64 cfg, phy_addr;
dma_addr_t iova;
for (pf = 0; pf < hw->total_pfs; pf++) {
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
/* If PF is not enabled, nothing to do */
if (!((cfg >> 20) & 0x01))
continue;
rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
pfvf = &rvu->pf[pf];
/* Get num of MSIX vectors attached to this PF */
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
/* Alloc msix bitmap for this PF */
err = rvu_alloc_bitmap(&pfvf->msix);
if (err)
return err;
/* Allocate memory for MSIX vector to RVU block LF mapping */
pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
sizeof(u16), GFP_KERNEL);
if (!pfvf->msix_lfmap)
return -ENOMEM;
/* For PF0 (AF) firmware will set msix vector offsets for
* AF, block AF and PF0_INT vectors, so jump to VFs.
*/
if (!pf)
goto setup_vfmsix;
/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
* These are allocated on driver init and never freed,
* so no need to set 'msix_lfmap' for these.
*/
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
nvecs = (cfg >> 12) & 0xFF;
cfg &= ~0x7FFULL;
offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
rvu_write64(rvu, BLKADDR_RVUM,
RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
setup_vfmsix:
/* Alloc msix bitmap for VFs */
for (vf = 0; vf < numvfs; vf++) {
pfvf = &rvu->hwvf[hwvf + vf];
/* Get num of MSIX vectors attached to this VF */
cfg = rvu_read64(rvu, BLKADDR_RVUM,
RVU_PRIV_PFX_MSIX_CFG(pf));
pfvf->msix.max = (cfg & 0xFFF) + 1;
rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
/* Alloc msix bitmap for this VF */
err = rvu_alloc_bitmap(&pfvf->msix);
if (err)
return err;
pfvf->msix_lfmap =
devm_kcalloc(rvu->dev, pfvf->msix.max,
sizeof(u16), GFP_KERNEL);
if (!pfvf->msix_lfmap)
return -ENOMEM;
/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
* These are allocated on driver init and never freed,
* so no need to set 'msix_lfmap' for these.
*/
cfg = rvu_read64(rvu, BLKADDR_RVUM,
RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
nvecs = (cfg >> 12) & 0xFF;
cfg &= ~0x7FFULL;
offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
rvu_write64(rvu, BLKADDR_RVUM,
RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
cfg | offset);
}
}
/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
* create an IOMMU mapping for the physical address configured by
* firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
*/
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
max_msix = cfg & 0xFFFFF;
if (rvu->fwdata && rvu->fwdata->msixtr_base)
phy_addr = rvu->fwdata->msixtr_base;
else
phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
iova = dma_map_resource(rvu->dev, phy_addr,
max_msix * PCI_MSIX_ENTRY_SIZE,
DMA_BIDIRECTIONAL, 0);
if (dma_mapping_error(rvu->dev, iova))
return -ENOMEM;
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
rvu->msix_base_iova = iova;
rvu->msixtr_base_phy = phy_addr;
return 0;
}
static void rvu_reset_msix(struct rvu *rvu)
{
/* Restore msixtr base register */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
rvu->msixtr_base_phy);
}
static void rvu_free_hw_resources(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
struct rvu_pfvf *pfvf;
int id, max_msix;
u64 cfg;
rvu_npa_freemem(rvu);
rvu_npc_freemem(rvu);
rvu_nix_freemem(rvu);
/* Free block LF bitmaps */
for (id = 0; id < BLK_COUNT; id++) {
block = &hw->block[id];
kfree(block->lf.bmap);
}
/* Free MSIX bitmaps */
for (id = 0; id < hw->total_pfs; id++) {
pfvf = &rvu->pf[id];
kfree(pfvf->msix.bmap);
}
for (id = 0; id < hw->total_vfs; id++) {
pfvf = &rvu->hwvf[id];
kfree(pfvf->msix.bmap);
}
/* Unmap MSIX vector base IOVA mapping */
if (!rvu->msix_base_iova)
return;
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
max_msix = cfg & 0xFFFFF;
dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
max_msix * PCI_MSIX_ENTRY_SIZE,
DMA_BIDIRECTIONAL, 0);
rvu_reset_msix(rvu);
mutex_destroy(&rvu->rsrc_lock);
}
static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
int pf, vf, numvfs, hwvf;
struct rvu_pfvf *pfvf;
u64 *mac;
for (pf = 0; pf < hw->total_pfs; pf++) {
/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
if (!pf)
goto lbkvf;
if (!is_pf_cgxmapped(rvu, pf))
continue;
/* Assign MAC address to PF */
pfvf = &rvu->pf[pf];
if (rvu->fwdata && pf < PF_MACNUM_MAX) {
mac = &rvu->fwdata->pf_macs[pf];
if (*mac)
u64_to_ether_addr(*mac, pfvf->mac_addr);
else
eth_random_addr(pfvf->mac_addr);
} else {
eth_random_addr(pfvf->mac_addr);
}
ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
lbkvf:
/* Assign MAC address to VFs*/
rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
for (vf = 0; vf < numvfs; vf++, hwvf++) {
pfvf = &rvu->hwvf[hwvf];
if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
mac = &rvu->fwdata->vf_macs[hwvf];
if (*mac)
u64_to_ether_addr(*mac, pfvf->mac_addr);
else
eth_random_addr(pfvf->mac_addr);
} else {
eth_random_addr(pfvf->mac_addr);
}
ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
}
}
}
static int rvu_fwdata_init(struct rvu *rvu)
{
u64 fwdbase;
int err;
/* Get firmware data base address */
err = cgx_get_fwdata_base(&fwdbase);
if (err)
goto fail;
rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
if (!rvu->fwdata)
goto fail;
if (!is_rvu_fwdata_valid(rvu)) {
dev_err(rvu->dev,
"Mismatch in 'fwdata' struct btw kernel and firmware\n");
iounmap(rvu->fwdata);
rvu->fwdata = NULL;
return -EINVAL;
}
return 0;
fail:
dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
return -EIO;
}
static void rvu_fwdata_exit(struct rvu *rvu)
{
if (rvu->fwdata)
iounmap(rvu->fwdata);
}
static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int blkid;
u64 cfg;
/* Init NIX LF's bitmap */
block = &hw->block[blkaddr];
if (!block->implemented)
return 0;
blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
block->lf.max = cfg & 0xFFF;
block->addr = blkaddr;
block->type = BLKTYPE_NIX;
block->lfshift = 8;
block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
block->lfcfg_reg = NIX_PRIV_LFX_CFG;
block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
block->lfreset_reg = NIX_AF_LF_RST;
block->rvu = rvu;
sprintf(block->name, "NIX%d", blkid);
rvu->nix_blkaddr[blkid] = blkaddr;
return rvu_alloc_bitmap(&block->lf);
}
static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int blkid;
u64 cfg;
/* Init CPT LF's bitmap */
block = &hw->block[blkaddr];
if (!block->implemented)
return 0;
blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
block->lf.max = cfg & 0xFF;
block->addr = blkaddr;
block->type = BLKTYPE_CPT;
block->multislot = true;
block->lfshift = 3;
block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
block->lfcfg_reg = CPT_PRIV_LFX_CFG;
block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
block->lfreset_reg = CPT_AF_LF_RST;
block->rvu = rvu;
sprintf(block->name, "CPT%d", blkid);
return rvu_alloc_bitmap(&block->lf);
}
static void rvu_get_lbk_bufsize(struct rvu *rvu)
{
struct pci_dev *pdev = NULL;
void __iomem *base;
u64 lbk_const;
pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
PCI_DEVID_OCTEONTX2_LBK, pdev);
if (!pdev)
return;
base = pci_ioremap_bar(pdev, 0);
if (!base)
goto err_put;
lbk_const = readq(base + LBK_CONST);
/* cache fifo size */
rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
iounmap(base);
err_put:
pci_dev_put(pdev);
}
static int rvu_setup_hw_resources(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int blkid, err;
u64 cfg;
/* Get HW supported max RVU PF & VF count */
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
hw->total_pfs = (cfg >> 32) & 0xFF;
hw->total_vfs = (cfg >> 20) & 0xFFF;
hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
/* Init NPA LF's bitmap */
block = &hw->block[BLKADDR_NPA];
if (!block->implemented)
goto nix;
cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
block->lf.max = (cfg >> 16) & 0xFFF;
block->addr = BLKADDR_NPA;
block->type = BLKTYPE_NPA;
block->lfshift = 8;
block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
block->lfcfg_reg = NPA_PRIV_LFX_CFG;
block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
block->lfreset_reg = NPA_AF_LF_RST;
block->rvu = rvu;
sprintf(block->name, "NPA");
err = rvu_alloc_bitmap(&block->lf);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate NPA LF bitmap\n", __func__);
return err;
}
nix:
err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
return err;
}
err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
return err;
}
/* Init SSO group's bitmap */
block = &hw->block[BLKADDR_SSO];
if (!block->implemented)
goto ssow;
cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
block->lf.max = cfg & 0xFFFF;
block->addr = BLKADDR_SSO;
block->type = BLKTYPE_SSO;
block->multislot = true;
block->lfshift = 3;
block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
block->rvu = rvu;
sprintf(block->name, "SSO GROUP");
err = rvu_alloc_bitmap(&block->lf);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate SSO LF bitmap\n", __func__);
return err;
}
ssow:
/* Init SSO workslot's bitmap */
block = &hw->block[BLKADDR_SSOW];
if (!block->implemented)
goto tim;
block->lf.max = (cfg >> 56) & 0xFF;
block->addr = BLKADDR_SSOW;
block->type = BLKTYPE_SSOW;
block->multislot = true;
block->lfshift = 3;
block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
block->lfreset_reg = SSOW_AF_LF_HWS_RST;
block->rvu = rvu;
sprintf(block->name, "SSOWS");
err = rvu_alloc_bitmap(&block->lf);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate SSOW LF bitmap\n", __func__);
return err;
}
tim:
/* Init TIM LF's bitmap */
block = &hw->block[BLKADDR_TIM];
if (!block->implemented)
goto cpt;
cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
block->lf.max = cfg & 0xFFFF;
block->addr = BLKADDR_TIM;
block->type = BLKTYPE_TIM;
block->multislot = true;
block->lfshift = 3;
block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
block->lfcfg_reg = TIM_PRIV_LFX_CFG;
block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
block->lfreset_reg = TIM_AF_LF_RST;
block->rvu = rvu;
sprintf(block->name, "TIM");
err = rvu_alloc_bitmap(&block->lf);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate TIM LF bitmap\n", __func__);
return err;
}
cpt:
err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
return err;
}
err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
if (err) {
dev_err(rvu->dev,
"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
return err;
}
/* Allocate memory for PFVF data */
rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
sizeof(struct rvu_pfvf), GFP_KERNEL);
if (!rvu->pf) {
dev_err(rvu->dev,
"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
return -ENOMEM;
}
rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
sizeof(struct rvu_pfvf), GFP_KERNEL);
if (!rvu->hwvf) {
dev_err(rvu->dev,
"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
return -ENOMEM;
}
mutex_init(&rvu->rsrc_lock);
rvu_fwdata_init(rvu);
err = rvu_setup_msix_resources(rvu);
if (err) {
dev_err(rvu->dev,
"%s: Failed to setup MSIX resources\n", __func__);
return err;
}
for (blkid = 0; blkid < BLK_COUNT; blkid++) {
block = &hw->block[blkid];
if (!block->lf.bmap)
continue;
/* Allocate memory for block LF/slot to pcifunc mapping info */
block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
sizeof(u16), GFP_KERNEL);
if (!block->fn_map) {
err = -ENOMEM;
goto msix_err;
}
/* Scan all blocks to check if low level firmware has
* already provisioned any of the resources to a PF/VF.
*/
rvu_scan_block(rvu, block);
}
err = rvu_set_channels_base(rvu);
if (err)
goto msix_err;
err = rvu_npc_init(rvu);
if (err) {
dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
goto npc_err;
}
err = rvu_cgx_init(rvu);
if (err) {
dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
goto cgx_err;
}
err = rvu_npc_exact_init(rvu);
if (err) {
dev_err(rvu->dev, "failed to initialize exact match table\n");
return err;
}
/* Assign MACs for CGX mapped functions */
rvu_setup_pfvf_macaddress(rvu);
err = rvu_npa_init(rvu);
if (err) {
dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
goto npa_err;
}
rvu_get_lbk_bufsize(rvu);
err = rvu_nix_init(rvu);
if (err) {
dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
goto nix_err;
}
err = rvu_sdp_init(rvu);
if (err) {
dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
goto nix_err;
}
rvu_program_channels(rvu);
err = rvu_mcs_init(rvu);
if (err) {
dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
goto nix_err;
}
return 0;
nix_err:
rvu_nix_freemem(rvu);
npa_err:
rvu_npa_freemem(rvu);
cgx_err:
rvu_cgx_exit(rvu);
npc_err:
rvu_npc_freemem(rvu);
rvu_fwdata_exit(rvu);
msix_err:
rvu_reset_msix(rvu);
return err;
}
/* NPA and NIX admin queue APIs */
void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
{
if (!aq)
return;
qmem_free(rvu->dev, aq->inst);
qmem_free(rvu->dev, aq->res);
devm_kfree(rvu->dev, aq);
}
int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
int qsize, int inst_size, int res_size)
{
struct admin_queue *aq;
int err;
*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
if (!*ad_queue)
return -ENOMEM;
aq = *ad_queue;
/* Alloc memory for instructions i.e AQ */
err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
if (err) {
devm_kfree(rvu->dev, aq);
return err;
}
/* Alloc memory for results */
err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
if (err) {
rvu_aq_free(rvu, aq);
return err;
}
spin_lock_init(&aq->lock);
return 0;
}
int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
struct ready_msg_rsp *rsp)
{
if (rvu->fwdata) {
rsp->rclk_freq = rvu->fwdata->rclk;
rsp->sclk_freq = rvu->fwdata->sclk;
}
return 0;
}
/* Get current count of a RVU block's LF/slots
* provisioned to a given RVU func.
*/
u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
{
switch (blkaddr) {
case BLKADDR_NPA:
return pfvf->npalf ? 1 : 0;
case BLKADDR_NIX0:
case BLKADDR_NIX1:
return pfvf->nixlf ? 1 : 0;
case BLKADDR_SSO:
return pfvf->sso;
case BLKADDR_SSOW:
return pfvf->ssow;
case BLKADDR_TIM:
return pfvf->timlfs;
case BLKADDR_CPT0:
return pfvf->cptlfs;
case BLKADDR_CPT1:
return pfvf->cpt1_lfs;
}
return 0;
}
/* Return true if LFs of block type are attached to pcifunc */
static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
{
switch (blktype) {
case BLKTYPE_NPA:
return pfvf->npalf ? 1 : 0;
case BLKTYPE_NIX:
return pfvf->nixlf ? 1 : 0;
case BLKTYPE_SSO:
return !!pfvf->sso;
case BLKTYPE_SSOW:
return !!pfvf->ssow;
case BLKTYPE_TIM:
return !!pfvf->timlfs;
case BLKTYPE_CPT:
return pfvf->cptlfs || pfvf->cpt1_lfs;
}
return false;
}
bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
{
struct rvu_pfvf *pfvf;
if (!is_pf_func_valid(rvu, pcifunc))
return false;
pfvf = rvu_get_pfvf(rvu, pcifunc);
/* Check if this PFFUNC has a LF of type blktype attached */
if (!is_blktype_attached(pfvf, blktype))
return false;
return true;
}
static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
int pcifunc, int slot)
{
u64 val;
val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
rvu_write64(rvu, block->addr, block->lookup_reg, val);
/* Wait for the lookup to finish */
/* TODO: put some timeout here */
while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
;
val = rvu_read64(rvu, block->addr, block->lookup_reg);
/* Check LF valid bit */
if (!(val & (1ULL << 12)))
return -1;
return (val & 0xFFF);
}
int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
u16 global_slot, u16 *slot_in_block)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
int numlfs, total_lfs = 0, nr_blocks = 0;
int i, num_blkaddr[BLK_COUNT] = { 0 };
struct rvu_block *block;
int blkaddr;
u16 start_slot;
if (!is_blktype_attached(pfvf, blktype))
return -ENODEV;
/* Get all the block addresses from which LFs are attached to
* the given pcifunc in num_blkaddr[].
*/
for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
block = &rvu->hw->block[blkaddr];
if (block->type != blktype)
continue;
if (!is_block_implemented(rvu->hw, blkaddr))
continue;
numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
if (numlfs) {
total_lfs += numlfs;
num_blkaddr[nr_blocks] = blkaddr;
nr_blocks++;
}
}
if (global_slot >= total_lfs)
return -ENODEV;
/* Based on the given global slot number retrieve the
* correct block address out of all attached block
* addresses and slot number in that block.
*/
total_lfs = 0;
blkaddr = -ENODEV;
for (i = 0; i < nr_blocks; i++) {
numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
total_lfs += numlfs;
if (global_slot < total_lfs) {
blkaddr = num_blkaddr[i];
start_slot = total_lfs - numlfs;
*slot_in_block = global_slot - start_slot;
break;
}
}
return blkaddr;
}
static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int slot, lf, num_lfs;
int blkaddr;
blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
if (blkaddr < 0)
return;
if (blktype == BLKTYPE_NIX)
rvu_nix_reset_mac(pfvf, pcifunc);
block = &hw->block[blkaddr];
num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
if (!num_lfs)
return;
for (slot = 0; slot < num_lfs; slot++) {
lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
if (lf < 0) /* This should never happen */
continue;
/* Disable the LF */
rvu_write64(rvu, blkaddr, block->lfcfg_reg |
(lf << block->lfshift), 0x00ULL);
/* Update SW maintained mapping info as well */
rvu_update_rsrc_map(rvu, pfvf, block,
pcifunc, lf, false);
/* Free the resource */
rvu_free_rsrc(&block->lf, lf);
/* Clear MSIX vector offset for this LF */
rvu_clear_msix_offset(rvu, pfvf, block, lf);
}
}
static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
u16 pcifunc)
{
struct rvu_hwinfo *hw = rvu->hw;
bool detach_all = true;
struct rvu_block *block;
int blkid;
mutex_lock(&rvu->rsrc_lock);
/* Check for partial resource detach */
if (detach && detach->partial)
detach_all = false;
/* Check for RVU block's LFs attached to this func,
* if so, detach them.
*/
for (blkid = 0; blkid < BLK_COUNT; blkid++) {
block = &hw->block[blkid];
if (!block->lf.bmap)
continue;
if (!detach_all && detach) {
if (blkid == BLKADDR_NPA && !detach->npalf)
continue;
else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
continue;
else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
continue;
else if ((blkid == BLKADDR_SSO) && !detach->sso)
continue;
else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
continue;
else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
continue;
else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
continue;
else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
continue;
}
rvu_detach_block(rvu, pcifunc, block->type);
}
mutex_unlock(&rvu->rsrc_lock);
return 0;
}
int rvu_mbox_handler_detach_resources(struct rvu *rvu,
struct rsrc_detach *detach,
struct msg_rsp *rsp)
{
return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
}
int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
int blkaddr = BLKADDR_NIX0, vf;
struct rvu_pfvf *pf;
pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
/* All CGX mapped PFs are set with assigned NIX block during init */
if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
blkaddr = pf->nix_blkaddr;
} else if (is_afvf(pcifunc)) {
vf = pcifunc - 1;
/* Assign NIX based on VF number. All even numbered VFs get
* NIX0 and odd numbered gets NIX1
*/
blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
/* NIX1 is not present on all silicons */
if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
blkaddr = BLKADDR_NIX0;
}
/* if SDP1 then the blkaddr is NIX1 */
if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
blkaddr = BLKADDR_NIX1;
switch (blkaddr) {
case BLKADDR_NIX1:
pfvf->nix_blkaddr = BLKADDR_NIX1;
pfvf->nix_rx_intf = NIX_INTFX_RX(1);
pfvf->nix_tx_intf = NIX_INTFX_TX(1);
break;
case BLKADDR_NIX0:
default:
pfvf->nix_blkaddr = BLKADDR_NIX0;
pfvf->nix_rx_intf = NIX_INTFX_RX(0);
pfvf->nix_tx_intf = NIX_INTFX_TX(0);
break;
}
return pfvf->nix_blkaddr;
}
static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
u16 pcifunc, struct rsrc_attach *attach)
{
int blkaddr;
switch (blktype) {
case BLKTYPE_NIX:
blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
break;
case BLKTYPE_CPT:
if (attach->hdr.ver < RVU_MULTI_BLK_VER)
return rvu_get_blkaddr(rvu, blktype, 0);
blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
BLKADDR_CPT0;
if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
return -ENODEV;
break;
default:
return rvu_get_blkaddr(rvu, blktype, 0);
}
if (is_block_implemented(rvu->hw, blkaddr))
return blkaddr;
return -ENODEV;
}
static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
int num_lfs, struct rsrc_attach *attach)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
int slot, lf;
int blkaddr;
u64 cfg;
if (!num_lfs)
return;
blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
if (blkaddr < 0)
return;
block = &hw->block[blkaddr];
if (!block->lf.bmap)
return;
for (slot = 0; slot < num_lfs; slot++) {
/* Allocate the resource */
lf = rvu_alloc_rsrc(&block->lf);
if (lf < 0)
return;
cfg = (1ULL << 63) | (pcifunc << 8) | slot;
rvu_write64(rvu, blkaddr, block->lfcfg_reg |
(lf << block->lfshift), cfg);
rvu_update_rsrc_map(rvu, pfvf, block,
pcifunc, lf, true);
/* Set start MSIX vector for this LF within this PF/VF */
rvu_set_msix_offset(rvu, pfvf, block, lf);
}
}
static int rvu_check_rsrc_availability(struct rvu *rvu,
struct rsrc_attach *req, u16 pcifunc)
{
struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
int free_lfs, mappedlfs, blkaddr;
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
/* Only one NPA LF can be attached */
if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
block = &hw->block[BLKADDR_NPA];
free_lfs = rvu_rsrc_free_count(&block->lf);
if (!free_lfs)
goto fail;
} else if (req->npalf) {
dev_err(&rvu->pdev->dev,
"Func 0x%x: Invalid req, already has NPA\n",
pcifunc);
return -EINVAL;
}
/* Only one NIX LF can be attached */
if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
pcifunc, req);
if (blkaddr < 0)
return blkaddr;
block = &hw->block[blkaddr];
free_lfs = rvu_rsrc_free_count(&block->lf);
if (!free_lfs)
goto fail;
} else if (req->nixlf) {
dev_err(&rvu->pdev->dev,
"Func 0x%x: Invalid req, already has NIX\n",
pcifunc);
return -EINVAL;
}
if (req->sso) {
block = &hw->block[BLKADDR_SSO];
/* Is request within limits ? */
if (req->sso > block->lf.max) {
dev_err(&rvu->pdev->dev,
"Func 0x%x: Invalid SSO req, %d > max %d\n",
pcifunc, req->sso, block->lf.max);
return -EINVAL;
}
mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
free_lfs = rvu_rsrc_free_count(&block->lf);
/* Check if additional resources are available */
if (req->sso > mappedlfs &&
((req->sso - mappedlfs) > free_lfs))
goto fail;
}
if (req->ssow) {
block = &hw->block[BLKADDR_SSOW];
if (req->ssow > block->lf.max) {
dev_err(&rvu->pdev->dev,
"Func 0x%x: Invalid SSOW req, %d > max %d\n",
pcifunc, req->sso, block->lf.max);
return -EINVAL;
}
mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
free_lfs = rvu_rsrc_free_count(&block->lf);
if (req->ssow > mappedlfs &&
((req->ssow - mappedlfs) > free_lfs))
goto fail;
}
if (req->timlfs) {
block = &hw->block[BLKADDR_TIM];
if (req->timlfs > block->lf.max) {
dev_err(&rvu->pdev->dev,
"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
pcifunc, req->timlfs, block->lf.max);
return -EINVAL;
}
mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
free_lfs = rvu_rsrc_free_count(&block->lf);
if (req->timlfs > mappedlfs &&
((req->timlfs - mappedlfs) > free_lfs))
goto fail;
}
if (req->cptlfs) {
blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
pcifunc, req);
if (blkaddr < 0)
return blkaddr;
block = &hw->block[blkaddr];
if (req->cptlfs > block->lf.max) {
dev_err(&rvu->pdev->dev,
"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
pcifunc, req->cptlfs, block->lf.max);
return -EINVAL;
}
mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
free_lfs = rvu_rsrc_free_count(&block->lf);
if (req->cptlfs > mappedlfs &&
((req->cptlfs - mappedlfs) > free_lfs))
goto fail;
}
return 0;
fail:
dev_info(rvu->dev, "Request for %s failed\n", block->name);
return -ENOSPC;
}
static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
struct rsrc_attach *attach)
{
int blkaddr, num_lfs;
blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
attach->hdr.pcifunc, attach);
if (blkaddr < 0)
return false;
num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
blkaddr);
/* Requester already has LFs from given block ? */
return !!num_lfs;
}
int rvu_mbox_handler_attach_resources(struct rvu *rvu,
struct rsrc_attach *attach,
struct msg_rsp *rsp)
{
u16 pcifunc = attach->hdr.pcifunc;
int err;
/* If first request, detach all existing attached resources */
if (!attach->modify)
rvu_detach_rsrcs(rvu, NULL, pcifunc);
mutex_lock(&rvu->rsrc_lock);
/* Check if the request can be accommodated */
err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
if (err)
goto exit;
/* Now attach the requested resources */
if (attach->npalf)
rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
if (attach->nixlf)
rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
if (attach->sso) {
/* RVU func doesn't know which exact LF or slot is attached
* to it, it always sees as slot 0,1,2. So for a 'modify'
* request, simply detach all existing attached LFs/slots
* and attach a fresh.
*/
if (attach->modify)
rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
attach->sso, attach);
}
if (attach->ssow) {
if (attach->modify)
rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
attach->ssow, attach);
}
if (attach->timlfs) {
if (attach->modify)
rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
attach->timlfs, attach);
}
if (attach->cptlfs) {
if (attach->modify &&
rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
attach->cptlfs, attach);
}
exit:
mutex_unlock(&rvu->rsrc_lock);
return err;
}
static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
int blkaddr, int lf)
{
u16 vec;
if (lf < 0)
return MSIX_VECTOR_INVALID;
for (vec = 0; vec < pfvf->msix.max; vec++) {
if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
return vec;
}
return MSIX_VECTOR_INVALID;
}
static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct rvu_block *block, int lf)
{
u16 nvecs, vec, offset;
u64 cfg;
cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
(lf << block->lfshift));
nvecs = (cfg >> 12) & 0xFF;
/* Check and alloc MSIX vectors, must be contiguous */
if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
return;
offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
/* Config MSIX offset in LF */
rvu_write64(rvu, block->addr, block->msixcfg_reg |
(lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
/* Update the bitmap as well */
for (vec = 0; vec < nvecs; vec++)
pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
}
static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
struct rvu_block *block, int lf)
{
u16 nvecs, vec, offset;
u64 cfg;
cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
(lf << block->lfshift));
nvecs = (cfg >> 12) & 0xFF;
/* Clear MSIX offset in LF */
rvu_write64(rvu, block->addr, block->msixcfg_reg |
(lf << block->lfshift), cfg & ~0x7FFULL);
offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
/* Update the mapping */
for (vec = 0; vec < nvecs; vec++)
pfvf->msix_lfmap[offset + vec] = 0;
/* Free the same in MSIX bitmap */
rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
}
int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
struct msix_offset_rsp *rsp)
{
struct rvu_hwinfo *hw = rvu->hw;
u16 pcifunc = req->hdr.pcifunc;
struct rvu_pfvf *pfvf;
int lf, slot, blkaddr;
pfvf = rvu_get_pfvf(rvu, pcifunc);
if (!pfvf->msix.bmap)
return 0;
/* Set MSIX offsets for each block's LFs attached to this PF/VF */
lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
/* Get BLKADDR from which LFs are attached to pcifunc */
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
if (blkaddr < 0) {
rsp->nix_msixoff = MSIX_VECTOR_INVALID;
} else {
lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
}
rsp->sso = pfvf->sso;
for (slot = 0; slot < rsp->sso; slot++) {
lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
rsp->sso_msixoff[slot] =
rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
}
rsp->ssow = pfvf->ssow;
for (slot = 0; slot < rsp->ssow; slot++) {
lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
rsp->ssow_msixoff[slot] =
rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
}
rsp->timlfs = pfvf->timlfs;
for (slot = 0; slot < rsp->timlfs; slot++) {
lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
rsp->timlf_msixoff[slot] =
rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
}
rsp->cptlfs = pfvf->cptlfs;
for (slot = 0; slot < rsp->cptlfs; slot++) {
lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
rsp->cptlf_msixoff[slot] =
rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
}
rsp->cpt1_lfs = pfvf->cpt1_lfs;
for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
rsp->cpt1_lf_msixoff[slot] =
rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
}
return 0;
}
int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
struct free_rsrcs_rsp *rsp)
{
struct rvu_hwinfo *hw = rvu->hw;
struct rvu_block *block;
struct nix_txsch *txsch;
struct nix_hw *nix_hw;
mutex_lock(&rvu->rsrc_lock);
block = &hw->block[BLKADDR_NPA];
rsp->npa = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_NIX0];
rsp->nix = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_NIX1];
rsp->nix1 = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_SSO];
rsp->sso = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_SSOW];
rsp->ssow = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_TIM];
rsp->tim = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_CPT0];
rsp->cpt = rvu_rsrc_free_count(&block->lf);
block = &hw->block[BLKADDR_CPT1];
rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
if (rvu->hw->cap.nix_fixed_txschq_mapping) {
rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
/* NIX1 */
if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
goto out;
rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
} else {
nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
rsp->schq[NIX_TXSCH_LVL_SMQ] =
rvu_rsrc_free_count(&txsch->schq);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
rsp->schq[NIX_TXSCH_LVL_TL4] =
rvu_rsrc_free_count(&txsch->schq);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
rsp->schq[NIX_TXSCH_LVL_TL3] =
rvu_rsrc_free_count(&txsch->schq);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
rsp->schq[NIX_TXSCH_LVL_TL2] =
rvu_rsrc_free_count(&txsch->schq);
if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
goto out;
nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
rvu_rsrc_free_count(&txsch->schq);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
rvu_rsrc_free_count(&txsch->schq);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
rvu_rsrc_free_count(&txsch->schq);
txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
rvu_rsrc_free_count(&txsch->schq);
}
rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
out:
rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
mutex_unlock(&rvu->rsrc_lock);
return 0;
}
int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
struct msg_rsp *rsp)
{
u16 pcifunc = req->hdr.pcifunc;
u16 vf, numvfs;
u64 cfg;
vf = pcifunc & RVU_PFVF_FUNC_MASK;
cfg = rvu_read64(rvu, BLKADDR_RVUM,
RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
numvfs = (cfg >> 12) & 0xFF;
if (vf && vf <= numvfs)
__rvu_flr_handler(rvu, pcifunc);
else
return RVU_INVALID_VF_ID;
return 0;
}
int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
struct get_hw_cap_rsp *rsp)
{
struct rvu_hwinfo *hw = rvu->hw;
rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
rsp->nix_shaping = hw->cap.nix_shaping;
rsp->npc_hash_extract = hw->cap.npc_hash_extract;
return 0;
}
int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
struct msg_rsp *rsp)
{
struct rvu_hwinfo *hw = rvu->hw;
u16 pcifunc = req->hdr.pcifunc;
struct rvu_pfvf *pfvf;
int blkaddr, nixlf;
u16 target;
/* Only PF can add VF permissions */
if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
return -EOPNOTSUPP;
target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
pfvf = rvu_get_pfvf(rvu, target);
if (req->flags & RESET_VF_PERM) {
pfvf->flags &= RVU_CLEAR_VF_PERM;
} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
(req->flags & VF_TRUSTED)) {
change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
/* disable multicast and promisc entries */
if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
if (blkaddr < 0)
return 0;
nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
target, 0);
if (nixlf < 0)
return 0;
npc_enadis_default_mce_entry(rvu, target, nixlf,
NIXLF_ALLMULTI_ENTRY,
false);
npc_enadis_default_mce_entry(rvu, target, nixlf,
NIXLF_PROMISC_ENTRY,
false);
}
}
return 0;
}
static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
struct mbox_msghdr *req)
{
struct rvu *rvu = pci_get_drvdata(mbox->pdev);
/* Check if valid, if not reply with a invalid msg */
if (req->sig != OTX2_MBOX_REQ_SIG)
goto bad_message;
switch (req->id) {
#define M(_name, _id, _fn_name, _req_type, _rsp_type) \
case _id: { \
struct _rsp_type *rsp; \
int err; \
\
rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \
mbox, devid, \
sizeof(struct _rsp_type)); \
/* some handlers should complete even if reply */ \
/* could not be allocated */ \
if (!rsp && \
_id != MBOX_MSG_DETACH_RESOURCES && \
_id != MBOX_MSG_NIX_TXSCH_FREE && \
_id != MBOX_MSG_VF_FLR) \
return -ENOMEM; \
if (rsp) { \
rsp->hdr.id = _id; \
rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \
rsp->hdr.pcifunc = req->pcifunc; \
rsp->hdr.rc = 0; \
} \
\
err = rvu_mbox_handler_ ## _fn_name(rvu, \
(struct _req_type *)req, \
rsp); \
if (rsp && err) \
rsp->hdr.rc = err; \
\
trace_otx2_msg_process(mbox->pdev, _id, err); \
return rsp ? err : -ENOMEM; \
}
MBOX_MESSAGES
#undef M
bad_message:
default:
otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
return -ENODEV;
}
}
static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
{
struct rvu *rvu = mwork->rvu;
int offset, err, id, devid;
struct otx2_mbox_dev *mdev;
struct mbox_hdr *req_hdr;
struct mbox_msghdr *msg;
struct mbox_wq_info *mw;
struct otx2_mbox *mbox;
switch (type) {
case TYPE_AFPF:
mw = &rvu->afpf_wq_info;
break;
case TYPE_AFVF:
mw = &rvu->afvf_wq_info;
break;
default:
return;
}
devid = mwork - mw->mbox_wrk;
mbox = &mw->mbox;
mdev = &mbox->dev[devid];
/* Process received mbox messages */
req_hdr = mdev->mbase + mbox->rx_start;
if (mw->mbox_wrk[devid].num_msgs == 0)
return;
offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
msg = mdev->mbase + offset;
/* Set which PF/VF sent this message based on mbox IRQ */
switch (type) {
case TYPE_AFPF:
msg->pcifunc &=
~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
break;
case TYPE_AFVF:
msg->pcifunc &=
~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
break;
}
err = rvu_process_mbox_msg(mbox, devid, msg);
if (!err) {
offset = mbox->rx_start + msg->next_msgoff;
continue;
}
if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
err, otx2_mbox_id2name(msg->id),
msg->id, rvu_get_pf(msg->pcifunc),
(msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
else
dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
err, otx2_mbox_id2name(msg->id),
msg->id, devid);
}
mw->mbox_wrk[devid].num_msgs = 0;
/* Send mbox responses to VF/PF */
otx2_mbox_msg_send(mbox, devid);
}
static inline void rvu_afpf_mbox_handler(struct work_struct *work)
{
struct rvu_work *mwork = container_of(work, struct rvu_work, work);
__rvu_mbox_handler(mwork, TYPE_AFPF);
}
static inline void rvu_afvf_mbox_handler(struct work_struct *work)
{
struct rvu_work *mwork = container_of(work, struct rvu_work, work);
__rvu_mbox_handler(mwork, TYPE_AFVF);
}
static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
{
struct rvu *rvu = mwork->rvu;
struct otx2_mbox_dev *mdev;
struct mbox_hdr *rsp_hdr;
struct mbox_msghdr *msg;
struct mbox_wq_info *mw;
struct otx2_mbox *mbox;
int offset, id, devid;
switch (type) {
case TYPE_AFPF:
mw = &rvu->afpf_wq_info;
break;
case TYPE_AFVF:
mw = &rvu->afvf_wq_info;
break;
default:
return;
}
devid = mwork - mw->mbox_wrk_up;
mbox = &mw->mbox_up;
mdev = &mbox->dev[devid];
rsp_hdr = mdev->mbase + mbox->rx_start;
if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
return;
}
offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
msg = mdev->mbase + offset;
if (msg->id >= MBOX_MSG_MAX) {
dev_err(rvu->dev,
"Mbox msg with unknown ID 0x%x\n", msg->id);
goto end;
}
if (msg->sig != OTX2_MBOX_RSP_SIG) {
dev_err(rvu->dev,
"Mbox msg with wrong signature %x, ID 0x%x\n",
msg->sig, msg->id);
goto end;
}
switch (msg->id) {
case MBOX_MSG_CGX_LINK_EVENT:
break;
default:
if (msg->rc)
dev_err(rvu->dev,
"Mbox msg response has err %d, ID 0x%x\n",
msg->rc, msg->id);
break;
}
end:
offset = mbox->rx_start + msg->next_msgoff;
mdev->msgs_acked++;
}
mw->mbox_wrk_up[devid].up_num_msgs = 0;
otx2_mbox_reset(mbox, devid);
}
static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
{
struct rvu_work *mwork = container_of(work, struct rvu_work, work);
__rvu_mbox_up_handler(mwork, TYPE_AFPF);
}
static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
{
struct rvu_work *mwork = container_of(work, struct rvu_work, work);
__rvu_mbox_up_handler(mwork, TYPE_AFVF);
}
static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
int num, int type, unsigned long *pf_bmap)
{
struct rvu_hwinfo *hw = rvu->hw;
int region;
u64 bar4;
/* For cn10k platform VF mailbox regions of a PF follows after the
* PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
* RVU_PF_VF_BAR4_ADDR register.
*/
if (type == TYPE_AFVF) {
for (region = 0; region < num; region++) {
if (!test_bit(region, pf_bmap))
continue;
if (hw->cap.per_pf_mbox_regs) {
bar4 = rvu_read64(rvu, BLKADDR_RVUM,
RVU_AF_PFX_BAR4_ADDR(0)) +
MBOX_SIZE;
bar4 += region * MBOX_SIZE;
} else {
bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
bar4 += region * MBOX_SIZE;
}
mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
if (!mbox_addr[region])
goto error;
}
return 0;
}
/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
* PF registers. Whereas for Octeontx2 it is read from
* RVU_AF_PF_BAR4_ADDR register.
*/
for (region = 0; region < num; region++) {
if (!test_bit(region, pf_bmap))
continue;
if (hw->cap.per_pf_mbox_regs) {
bar4 = rvu_read64(rvu, BLKADDR_RVUM,
RVU_AF_PFX_BAR4_ADDR(region));
} else {
bar4 = rvu_read64(rvu, BLKADDR_RVUM,
RVU_AF_PF_BAR4_ADDR);
bar4 += region * MBOX_SIZE;
}
mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
if (!mbox_addr[region])
goto error;
}
return 0;
error:
while (region--)
iounmap((void __iomem *)mbox_addr[region]);
return -ENOMEM;
}
static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
int type, int num,
void (mbox_handler)(struct work_struct *),
void (mbox_up_handler)(struct work_struct *))
{
int err = -EINVAL, i, dir, dir_up;
void __iomem *reg_base;
struct rvu_work *mwork;
unsigned long *pf_bmap;
void **mbox_regions;
const char *name;
u64 cfg;
pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
if (!pf_bmap)
return -ENOMEM;
/* RVU VFs */
if (type == TYPE_AFVF)
bitmap_set(pf_bmap, 0, num);
if (type == TYPE_AFPF) {
/* Mark enabled PFs in bitmap */
for (i = 0; i < num; i++) {
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
if (cfg & BIT_ULL(20))
set_bit(i, pf_bmap);
}
}
mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
if (!mbox_regions) {
err = -ENOMEM;
goto free_bitmap;
}
switch (type) {
case TYPE_AFPF:
name = "rvu_afpf_mailbox";
dir = MBOX_DIR_AFPF;
dir_up = MBOX_DIR_AFPF_UP;
reg_base = rvu->afreg_base;
err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
if (err)
goto free_regions;
break;
case TYPE_AFVF:
name = "rvu_afvf_mailbox";
dir = MBOX_DIR_PFVF;
dir_up = MBOX_DIR_PFVF_UP;
reg_base = rvu->pfreg_base;
err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
if (err)
goto free_regions;
break;
default:
goto free_regions;
}
mw->mbox_wq = alloc_workqueue(name,
WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
num);
if (!mw->mbox_wq) {
err = -ENOMEM;
goto unmap_regions;
}
mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
sizeof(struct rvu_work), GFP_KERNEL);
if (!mw->mbox_wrk) {
err = -ENOMEM;
goto exit;
}
mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
sizeof(struct rvu_work), GFP_KERNEL);
if (!mw->mbox_wrk_up) {
err = -ENOMEM;
goto exit;
}
err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
reg_base, dir, num, pf_bmap);
if (err)
goto exit;
err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
reg_base, dir_up, num, pf_bmap);
if (err)
goto exit;
for (i = 0; i < num; i++) {
if (!test_bit(i, pf_bmap))
continue;
mwork = &mw->mbox_wrk[i];
mwork->rvu = rvu;
INIT_WORK(&mwork->work, mbox_handler);
mwork = &mw->mbox_wrk_up[i];
mwork->rvu = rvu;
INIT_WORK(&mwork->work, mbox_up_handler);
}
goto free_regions;
exit:
destroy_workqueue(mw->mbox_wq);
unmap_regions:
while (num--)
iounmap((void __iomem *)mbox_regions[num]);
free_regions:
kfree(mbox_regions);
free_bitmap:
bitmap_free(pf_bmap);
return err;
}
static void rvu_mbox_destroy(struct mbox_wq_info *mw)
{
struct otx2_mbox *mbox = &mw->mbox;
struct otx2_mbox_dev *mdev;
int devid;
if (mw->mbox_wq) {
destroy_workqueue(mw->mbox_wq);
mw->mbox_wq = NULL;
}
for (devid = 0; devid < mbox->ndevs; devid++) {
mdev = &mbox->dev[devid];
if (mdev->hwbase)
iounmap((void __iomem *)mdev->hwbase);
}
otx2_mbox_destroy(&mw->mbox);
otx2_mbox_destroy(&mw->mbox_up);
}
static void rvu_queue_work(struct mbox_wq_info *mw, int first,
int mdevs, u64 intr)
{
struct otx2_mbox_dev *mdev;
struct otx2_mbox *mbox;
struct mbox_hdr *hdr;
int i;
for (i = first; i < mdevs; i++) {
/* start from 0 */
if (!(intr & BIT_ULL(i - first)))
continue;
mbox = &mw->mbox;
mdev = &mbox->dev[i];
hdr = mdev->mbase + mbox->rx_start;
/*The hdr->num_msgs is set to zero immediately in the interrupt
* handler to ensure that it holds a correct value next time
* when the interrupt handler is called.
* pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
* pf>mbox.up_num_msgs holds the data for use in
* pfaf_mbox_up_handler.
*/
if (hdr->num_msgs) {
mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
hdr->num_msgs = 0;
queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
}
mbox = &mw->mbox_up;
mdev = &mbox->dev[i];
hdr = mdev->mbase + mbox->rx_start;
if (hdr->num_msgs) {
mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
hdr->num_msgs = 0;
queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
}
}
}
static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
{
struct rvu *rvu = (struct rvu *)rvu_irq;
int vfs = rvu->vfs;
u64 intr;
intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
/* Clear interrupts */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
if (intr)
trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
/* Sync with mbox memory region */
rmb();
rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
/* Handle VF interrupts */
if (vfs > 64) {
intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
vfs -= 64;
}
intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
if (intr)
trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
return IRQ_HANDLED;
}
static void rvu_enable_mbox_intr(struct rvu *rvu)
{
struct rvu_hwinfo *hw = rvu->hw;
/* Clear spurious irqs, if any */
rvu_write64(rvu, BLKADDR_RVUM,
RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
INTR_MASK(hw->total_pfs) & ~1ULL);
}
static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
{
struct rvu_block *block;
int slot, lf, num_lfs;
int err;
block = &rvu->hw->block[blkaddr];
num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
block->addr);
if (!num_lfs)
return;
for (slot = 0; slot < num_lfs; slot++) {
lf = rvu_get_lf(rvu, block, pcifunc, slot);
if (lf < 0)
continue;
/* Cleanup LF and reset it */
if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
else if (block->addr == BLKADDR_NPA)
rvu_npa_lf_teardown(rvu, pcifunc, lf);
else if ((block->addr == BLKADDR_CPT0) ||
(block->addr == BLKADDR_CPT1))
rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
slot);
err = rvu_lf_reset(rvu, block, lf);
if (err) {
dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
block->addr, lf);
}
}
}
static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
{
if (rvu_npc_exact_has_match_table(rvu))
rvu_npc_exact_reset(rvu, pcifunc);
mutex_lock(&rvu->flr_lock);
/* Reset order should reflect inter-block dependencies:
* 1. Reset any packet/work sources (NIX, CPT, TIM)
* 2. Flush and reset SSO/SSOW
* 3. Cleanup pools (NPA)
*/
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
rvu_reset_lmt_map_tbl(rvu, pcifunc);
rvu_detach_rsrcs(rvu, NULL, pcifunc);
/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
* entries, check and free the MCAM entries explicitly to avoid leak.
* Since LF is detached use LF number as -1.
*/
rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
mutex_unlock(&rvu->flr_lock);
}
static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
{
int reg = 0;
/* pcifunc = 0(PF0) | (vf + 1) */
__rvu_flr_handler(rvu, vf + 1);
if (vf >= 64) {
reg = 1;
vf = vf - 64;
}
/* Signal FLR finish and enable IRQ */
rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
}
static void rvu_flr_handler(struct work_struct *work)
{
struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
struct rvu *rvu = flrwork->rvu;
u16 pcifunc, numvfs, vf;
u64 cfg;
int pf;
pf = flrwork - rvu->flr_wrk;
if (pf >= rvu->hw->total_pfs) {
rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
return;
}
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
numvfs = (cfg >> 12) & 0xFF;
pcifunc = pf << RVU_PFVF_PF_SHIFT;
for (vf = 0; vf < numvfs; vf++)
__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
__rvu_flr_handler(rvu, pcifunc);
/* Signal FLR finish */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
/* Enable interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf));
}
static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
{
int dev, vf, reg = 0;
u64 intr;
if (start_vf >= 64)
reg = 1;
intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
if (!intr)
return;
for (vf = 0; vf < numvfs; vf++) {
if (!(intr & BIT_ULL(vf)))
continue;
/* Clear and disable the interrupt */
rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
dev = vf + start_vf + rvu->hw->total_pfs;
queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
}
}
static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
{
struct rvu *rvu = (struct rvu *)rvu_irq;
u64 intr;
u8 pf;
intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
if (!intr)
goto afvf_flr;
for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
if (intr & (1ULL << pf)) {
/* clear interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
BIT_ULL(pf));
/* Disable the interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
BIT_ULL(pf));
/* PF is already dead do only AF related operations */
queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
}
}
afvf_flr:
rvu_afvf_queue_flr_work(rvu, 0, 64);
if (rvu->vfs > 64)
rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
return IRQ_HANDLED;
}
static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
{
int vf;
/* Nothing to be done here other than clearing the
* TRPEND bit.
*/
for (vf = 0; vf < 64; vf++) {
if (intr & (1ULL << vf)) {
/* clear the trpend due to ME(master enable) */
rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
/* clear interrupt */
rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
}
}
}
/* Handles ME interrupts from VFs of AF */
static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
{
struct rvu *rvu = (struct rvu *)rvu_irq;
int vfset;
u64 intr;
intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
for (vfset = 0; vfset <= 1; vfset++) {
intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
if (intr)
rvu_me_handle_vfset(rvu, vfset, intr);
}
return IRQ_HANDLED;
}
/* Handles ME interrupts from PFs */
static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
{
struct rvu *rvu = (struct rvu *)rvu_irq;
u64 intr;
u8 pf;
intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
/* Nothing to be done here other than clearing the
* TRPEND bit.
*/
for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
if (intr & (1ULL << pf)) {
/* clear the trpend due to ME(master enable) */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
BIT_ULL(pf));
/* clear interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
BIT_ULL(pf));
}
}
return IRQ_HANDLED;
}
static void rvu_unregister_interrupts(struct rvu *rvu)
{
int irq;
rvu_cpt_unregister_interrupts(rvu);
/* Disable the Mbox interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
/* Disable the PF FLR interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
/* Disable the PF ME interrupt */
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
for (irq = 0; irq < rvu->num_vec; irq++) {
if (rvu->irq_allocated[irq]) {
free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
rvu->irq_allocated[irq] = false;
}
}
pci_free_irq_vectors(rvu->pdev);
rvu->num_vec = 0;
}
static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
{
struct rvu_pfvf *pfvf = &rvu->pf[0];
int offset;
pfvf = &rvu->pf[0];
offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
/* Make sure there are enough MSIX vectors configured so that
* VF interrupts can be handled. Offset equal to zero means
* that PF vectors are not configured and overlapping AF vectors.
*/
return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
offset;
}
static int rvu_register_interrupts(struct rvu *rvu)
{
int ret, offset, pf_vec_start;
rvu->num_vec = pci_msix_vec_count(rvu->pdev);
rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
NAME_SIZE, GFP_KERNEL);
if (!rvu->irq_name)
return -ENOMEM;
rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
sizeof(bool), GFP_KERNEL);
if (!rvu->irq_allocated)
return -ENOMEM;
/* Enable MSI-X */
ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
rvu->num_vec, PCI_IRQ_MSIX);
if (ret < 0) {
dev_err(rvu->dev,
"RVUAF: Request for %d msix vectors failed, ret %d\n",
rvu->num_vec, ret);
return ret;
}
/* Register mailbox interrupt handler */
sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
rvu_mbox_intr_handler, 0,
&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for mbox irq\n");
goto fail;
}
rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
/* Enable mailbox interrupts from all PFs */
rvu_enable_mbox_intr(rvu);
/* Register FLR interrupt handler */
sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
"RVUAF FLR");
ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
rvu_flr_intr_handler, 0,
&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for FLR\n");
goto fail;
}
rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
/* Enable FLR interrupt for all PFs*/
rvu_write64(rvu, BLKADDR_RVUM,
RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
/* Register ME interrupt handler */
sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
"RVUAF ME");
ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
rvu_me_pf_intr_handler, 0,
&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for ME\n");
}
rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
/* Clear TRPEND bit for all PF */
rvu_write64(rvu, BLKADDR_RVUM,
RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
/* Enable ME interrupt for all PFs*/
rvu_write64(rvu, BLKADDR_RVUM,
RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
if (!rvu_afvf_msix_vectors_num_ok(rvu))
return 0;
/* Get PF MSIX vectors offset. */
pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
/* Register MBOX0 interrupt. */
offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
ret = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu_mbox_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE],
rvu);
if (ret)
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for Mbox0\n");
rvu->irq_allocated[offset] = true;
/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
* simply increment current offset by 1.
*/
offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
ret = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu_mbox_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE],
rvu);
if (ret)
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for Mbox1\n");
rvu->irq_allocated[offset] = true;
/* Register FLR interrupt handler for AF's VFs */
offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
ret = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu_flr_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE], rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
goto fail;
}
rvu->irq_allocated[offset] = true;
offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
ret = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu_flr_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE], rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
goto fail;
}
rvu->irq_allocated[offset] = true;
/* Register ME interrupt handler for AF's VFs */
offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
ret = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu_me_vf_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE], rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
goto fail;
}
rvu->irq_allocated[offset] = true;
offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
ret = request_irq(pci_irq_vector(rvu->pdev, offset),
rvu_me_vf_intr_handler, 0,
&rvu->irq_name[offset * NAME_SIZE], rvu);
if (ret) {
dev_err(rvu->dev,
"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
goto fail;
}
rvu->irq_allocated[offset] = true;
ret = rvu_cpt_register_interrupts(rvu);
if (ret)
goto fail;
return 0;
fail:
rvu_unregister_interrupts(rvu);
return ret;
}
static void rvu_flr_wq_destroy(struct rvu *rvu)
{
if (rvu->flr_wq) {
destroy_workqueue(rvu->flr_wq);
rvu->flr_wq = NULL;
}
}
static int rvu_flr_init(struct rvu *rvu)
{
int dev, num_devs;
u64 cfg;
int pf;
/* Enable FLR for all PFs*/
for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
cfg | BIT_ULL(22));
}
rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1);
if (!rvu->flr_wq)
return -ENOMEM;
num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
sizeof(struct rvu_work), GFP_KERNEL);
if (!rvu->flr_wrk) {
destroy_workqueue(rvu->flr_wq);
return -ENOMEM;
}
for (dev = 0; dev < num_devs; dev++) {
rvu->flr_wrk[dev].rvu = rvu;
INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
}
mutex_init(&rvu->flr_lock);
return 0;
}
static void rvu_disable_afvf_intr(struct rvu *rvu)
{
int vfs = rvu->vfs;
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
if (vfs <= 64)
return;
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
}
static void rvu_enable_afvf_intr(struct rvu *rvu)
{
int vfs = rvu->vfs;
/* Clear any pending interrupts and enable AF VF interrupts for
* the first 64 VFs.
*/
/* Mbox */
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
/* FLR */
rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
/* Same for remaining VFs, if any. */
if (vfs <= 64)
return;
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
}
int rvu_get_num_lbk_chans(void)
{
struct pci_dev *pdev;
void __iomem *base;
int ret = -EIO;
pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
NULL);
if (!pdev)
goto err;
base = pci_ioremap_bar(pdev, 0);
if (!base)
goto err_put;
/* Read number of available LBK channels from LBK(0)_CONST register. */
ret = (readq(base + 0x10) >> 32) & 0xffff;
iounmap(base);
err_put:
pci_dev_put(pdev);
err:
return ret;
}
static int rvu_enable_sriov(struct rvu *rvu)
{
struct pci_dev *pdev = rvu->pdev;
int err, chans, vfs;
if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
dev_warn(&pdev->dev,
"Skipping SRIOV enablement since not enough IRQs are available\n");
return 0;
}
chans = rvu_get_num_lbk_chans();
if (chans < 0)
return chans;
vfs = pci_sriov_get_totalvfs(pdev);
/* Limit VFs in case we have more VFs than LBK channels available. */
if (vfs > chans)
vfs = chans;
if (!vfs)
return 0;
/* LBK channel number 63 is used for switching packets between
* CGX mapped VFs. Hence limit LBK pairs till 62 only.
*/
if (vfs > 62)
vfs = 62;
/* Save VFs number for reference in VF interrupts handlers.
* Since interrupts might start arriving during SRIOV enablement
* ordinary API cannot be used to get number of enabled VFs.
*/
rvu->vfs = vfs;
err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
if (err)
return err;
rvu_enable_afvf_intr(rvu);
/* Make sure IRQs are enabled before SRIOV. */
mb();
err = pci_enable_sriov(pdev, vfs);
if (err) {
rvu_disable_afvf_intr(rvu);
rvu_mbox_destroy(&rvu->afvf_wq_info);
return err;
}
return 0;
}
static void rvu_disable_sriov(struct rvu *rvu)
{
rvu_disable_afvf_intr(rvu);
rvu_mbox_destroy(&rvu->afvf_wq_info);
pci_disable_sriov(rvu->pdev);
}
static void rvu_update_module_params(struct rvu *rvu)
{
const char *default_pfl_name = "default";
strscpy(rvu->mkex_pfl_name,
mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
strscpy(rvu->kpu_pfl_name,
kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
}
static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
struct rvu *rvu;
int err;
rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
if (!rvu)
return -ENOMEM;
rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
if (!rvu->hw) {
devm_kfree(dev, rvu);
return -ENOMEM;
}
pci_set_drvdata(pdev, rvu);
rvu->pdev = pdev;
rvu->dev = &pdev->dev;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
goto err_freemem;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto err_disable_device;
}
err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "DMA mask config failed, abort\n");
goto err_release_regions;
}
pci_set_master(pdev);
rvu->ptp = ptp_get();
if (IS_ERR(rvu->ptp)) {
err = PTR_ERR(rvu->ptp);
if (err)
goto err_release_regions;
rvu->ptp = NULL;
}
/* Map Admin function CSRs */
rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
if (!rvu->afreg_base || !rvu->pfreg_base) {
dev_err(dev, "Unable to map admin function CSRs, aborting\n");
err = -ENOMEM;
goto err_put_ptp;
}
/* Store module params in rvu structure */
rvu_update_module_params(rvu);
/* Check which blocks the HW supports */
rvu_check_block_implemented(rvu);
rvu_reset_all_blocks(rvu);
rvu_setup_hw_capabilities(rvu);
err = rvu_setup_hw_resources(rvu);
if (err)
goto err_put_ptp;
/* Init mailbox btw AF and PFs */
err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
rvu->hw->total_pfs, rvu_afpf_mbox_handler,
rvu_afpf_mbox_up_handler);
if (err) {
dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
goto err_hwsetup;
}
err = rvu_flr_init(rvu);
if (err) {
dev_err(dev, "%s: Failed to initialize flr\n", __func__);
goto err_mbox;
}
err = rvu_register_interrupts(rvu);
if (err) {
dev_err(dev, "%s: Failed to register interrupts\n", __func__);
goto err_flr;
}
err = rvu_register_dl(rvu);
if (err) {
dev_err(dev, "%s: Failed to register devlink\n", __func__);
goto err_irq;
}
rvu_setup_rvum_blk_revid(rvu);
/* Enable AF's VFs (if any) */
err = rvu_enable_sriov(rvu);
if (err) {
dev_err(dev, "%s: Failed to enable sriov\n", __func__);
goto err_dl;
}
/* Initialize debugfs */
rvu_dbg_init(rvu);
mutex_init(&rvu->rswitch.switch_lock);
if (rvu->fwdata)
ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
rvu->fwdata->ptp_ext_tstamp);
return 0;
err_dl:
rvu_unregister_dl(rvu);
err_irq:
rvu_unregister_interrupts(rvu);
err_flr:
rvu_flr_wq_destroy(rvu);
err_mbox:
rvu_mbox_destroy(&rvu->afpf_wq_info);
err_hwsetup:
rvu_cgx_exit(rvu);
rvu_fwdata_exit(rvu);
rvu_mcs_exit(rvu);
rvu_reset_all_blocks(rvu);
rvu_free_hw_resources(rvu);
rvu_clear_rvum_blk_revid(rvu);
err_put_ptp:
ptp_put(rvu->ptp);
err_release_regions:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
err_freemem:
pci_set_drvdata(pdev, NULL);
devm_kfree(&pdev->dev, rvu->hw);
devm_kfree(dev, rvu);
return err;
}
static void rvu_remove(struct pci_dev *pdev)
{
struct rvu *rvu = pci_get_drvdata(pdev);
rvu_dbg_exit(rvu);
rvu_unregister_dl(rvu);
rvu_unregister_interrupts(rvu);
rvu_flr_wq_destroy(rvu);
rvu_cgx_exit(rvu);
rvu_fwdata_exit(rvu);
rvu_mcs_exit(rvu);
rvu_mbox_destroy(&rvu->afpf_wq_info);
rvu_disable_sriov(rvu);
rvu_reset_all_blocks(rvu);
rvu_free_hw_resources(rvu);
rvu_clear_rvum_blk_revid(rvu);
ptp_put(rvu->ptp);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
devm_kfree(&pdev->dev, rvu->hw);
devm_kfree(&pdev->dev, rvu);
}
static struct pci_driver rvu_driver = {
.name = DRV_NAME,
.id_table = rvu_id_table,
.probe = rvu_probe,
.remove = rvu_remove,
};
static int __init rvu_init_module(void)
{
int err;
pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
err = pci_register_driver(&cgx_driver);
if (err < 0)
return err;
err = pci_register_driver(&ptp_driver);
if (err < 0)
goto ptp_err;
err = pci_register_driver(&mcs_driver);
if (err < 0)
goto mcs_err;
err = pci_register_driver(&rvu_driver);
if (err < 0)
goto rvu_err;
return 0;
rvu_err:
pci_unregister_driver(&mcs_driver);
mcs_err:
pci_unregister_driver(&ptp_driver);
ptp_err:
pci_unregister_driver(&cgx_driver);
return err;
}
static void __exit rvu_cleanup_module(void)
{
pci_unregister_driver(&rvu_driver);
pci_unregister_driver(&mcs_driver);
pci_unregister_driver(&ptp_driver);
pci_unregister_driver(&cgx_driver);
}
module_init(rvu_init_module);
module_exit(rvu_cleanup_module);