linuxdebug/drivers/net/ethernet/netronome/nfp/nfp_net_dp.c

467 lines
12 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2019 Netronome Systems, Inc. */
#include "nfp_app.h"
#include "nfp_net_dp.h"
#include "nfp_net_xsk.h"
/**
* nfp_net_rx_alloc_one() - Allocate and map page frag for RX
* @dp: NFP Net data path struct
* @dma_addr: Pointer to storage for DMA address (output param)
*
* This function will allcate a new page frag, map it for DMA.
*
* Return: allocated page frag or NULL on failure.
*/
void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr)
{
void *frag;
if (!dp->xdp_prog) {
frag = netdev_alloc_frag(dp->fl_bufsz);
} else {
struct page *page;
page = alloc_page(GFP_KERNEL);
frag = page ? page_address(page) : NULL;
}
if (!frag) {
nn_dp_warn(dp, "Failed to alloc receive page frag\n");
return NULL;
}
*dma_addr = nfp_net_dma_map_rx(dp, frag);
if (dma_mapping_error(dp->dev, *dma_addr)) {
nfp_net_free_frag(frag, dp->xdp_prog);
nn_dp_warn(dp, "Failed to map DMA RX buffer\n");
return NULL;
}
return frag;
}
/**
* nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring
* @tx_ring: TX ring structure
* @dp: NFP Net data path struct
* @r_vec: IRQ vector servicing this ring
* @idx: Ring index
* @is_xdp: Is this an XDP TX ring?
*/
static void
nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, struct nfp_net_dp *dp,
struct nfp_net_r_vector *r_vec, unsigned int idx,
bool is_xdp)
{
struct nfp_net *nn = r_vec->nfp_net;
tx_ring->idx = idx;
tx_ring->r_vec = r_vec;
tx_ring->is_xdp = is_xdp;
u64_stats_init(&tx_ring->r_vec->tx_sync);
tx_ring->qcidx = tx_ring->idx * nn->stride_tx;
tx_ring->txrwb = dp->txrwb ? &dp->txrwb[idx] : NULL;
tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx);
}
/**
* nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring
* @rx_ring: RX ring structure
* @r_vec: IRQ vector servicing this ring
* @idx: Ring index
*/
static void
nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring,
struct nfp_net_r_vector *r_vec, unsigned int idx)
{
struct nfp_net *nn = r_vec->nfp_net;
rx_ring->idx = idx;
rx_ring->r_vec = r_vec;
u64_stats_init(&rx_ring->r_vec->rx_sync);
rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx;
rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx);
}
/**
* nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable
* @rx_ring: RX ring structure
*
* Assumes that the device is stopped, must be idempotent.
*/
void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring)
{
unsigned int wr_idx, last_idx;
/* wr_p == rd_p means ring was never fed FL bufs. RX rings are always
* kept at cnt - 1 FL bufs.
*/
if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0)
return;
/* Move the empty entry to the end of the list */
wr_idx = D_IDX(rx_ring, rx_ring->wr_p);
last_idx = rx_ring->cnt - 1;
if (rx_ring->r_vec->xsk_pool) {
rx_ring->xsk_rxbufs[wr_idx] = rx_ring->xsk_rxbufs[last_idx];
memset(&rx_ring->xsk_rxbufs[last_idx], 0,
sizeof(*rx_ring->xsk_rxbufs));
} else {
rx_ring->rxbufs[wr_idx] = rx_ring->rxbufs[last_idx];
memset(&rx_ring->rxbufs[last_idx], 0, sizeof(*rx_ring->rxbufs));
}
memset(rx_ring->rxds, 0, rx_ring->size);
rx_ring->wr_p = 0;
rx_ring->rd_p = 0;
}
/**
* nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring
* @dp: NFP Net data path struct
* @rx_ring: RX ring to remove buffers from
*
* Assumes that the device is stopped and buffers are in [0, ring->cnt - 1)
* entries. After device is disabled nfp_net_rx_ring_reset() must be called
* to restore required ring geometry.
*/
static void
nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp,
struct nfp_net_rx_ring *rx_ring)
{
unsigned int i;
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
return;
for (i = 0; i < rx_ring->cnt - 1; i++) {
/* NULL skb can only happen when initial filling of the ring
* fails to allocate enough buffers and calls here to free
* already allocated ones.
*/
if (!rx_ring->rxbufs[i].frag)
continue;
nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr);
nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog);
rx_ring->rxbufs[i].dma_addr = 0;
rx_ring->rxbufs[i].frag = NULL;
}
}
/**
* nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW)
* @dp: NFP Net data path struct
* @rx_ring: RX ring to remove buffers from
*/
static int
nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp,
struct nfp_net_rx_ring *rx_ring)
{
struct nfp_net_rx_buf *rxbufs;
unsigned int i;
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
return 0;
rxbufs = rx_ring->rxbufs;
for (i = 0; i < rx_ring->cnt - 1; i++) {
rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr);
if (!rxbufs[i].frag) {
nfp_net_rx_ring_bufs_free(dp, rx_ring);
return -ENOMEM;
}
}
return 0;
}
int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
{
unsigned int r;
dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings),
GFP_KERNEL);
if (!dp->tx_rings)
return -ENOMEM;
if (dp->ctrl & NFP_NET_CFG_CTRL_TXRWB) {
dp->txrwb = dma_alloc_coherent(dp->dev,
dp->num_tx_rings * sizeof(u64),
&dp->txrwb_dma, GFP_KERNEL);
if (!dp->txrwb)
goto err_free_rings;
}
for (r = 0; r < dp->num_tx_rings; r++) {
int bias = 0;
if (r >= dp->num_stack_tx_rings)
bias = dp->num_stack_tx_rings;
nfp_net_tx_ring_init(&dp->tx_rings[r], dp,
&nn->r_vecs[r - bias], r, bias);
if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r]))
goto err_free_prev;
if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r]))
goto err_free_ring;
}
return 0;
err_free_prev:
while (r--) {
nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
err_free_ring:
nfp_net_tx_ring_free(dp, &dp->tx_rings[r]);
}
if (dp->txrwb)
dma_free_coherent(dp->dev, dp->num_tx_rings * sizeof(u64),
dp->txrwb, dp->txrwb_dma);
err_free_rings:
kfree(dp->tx_rings);
return -ENOMEM;
}
void nfp_net_tx_rings_free(struct nfp_net_dp *dp)
{
unsigned int r;
for (r = 0; r < dp->num_tx_rings; r++) {
nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]);
nfp_net_tx_ring_free(dp, &dp->tx_rings[r]);
}
if (dp->txrwb)
dma_free_coherent(dp->dev, dp->num_tx_rings * sizeof(u64),
dp->txrwb, dp->txrwb_dma);
kfree(dp->tx_rings);
}
/**
* nfp_net_rx_ring_free() - Free resources allocated to a RX ring
* @rx_ring: RX ring to free
*/
static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring)
{
struct nfp_net_r_vector *r_vec = rx_ring->r_vec;
struct nfp_net_dp *dp = &r_vec->nfp_net->dp;
if (dp->netdev)
xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx))
kvfree(rx_ring->xsk_rxbufs);
else
kvfree(rx_ring->rxbufs);
if (rx_ring->rxds)
dma_free_coherent(dp->dev, rx_ring->size,
rx_ring->rxds, rx_ring->dma);
rx_ring->cnt = 0;
rx_ring->rxbufs = NULL;
rx_ring->xsk_rxbufs = NULL;
rx_ring->rxds = NULL;
rx_ring->dma = 0;
rx_ring->size = 0;
}
/**
* nfp_net_rx_ring_alloc() - Allocate resource for a RX ring
* @dp: NFP Net data path struct
* @rx_ring: RX ring to allocate
*
* Return: 0 on success, negative errno otherwise.
*/
static int
nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring)
{
enum xdp_mem_type mem_type;
size_t rxbuf_sw_desc_sz;
int err;
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) {
mem_type = MEM_TYPE_XSK_BUFF_POOL;
rxbuf_sw_desc_sz = sizeof(*rx_ring->xsk_rxbufs);
} else {
mem_type = MEM_TYPE_PAGE_ORDER0;
rxbuf_sw_desc_sz = sizeof(*rx_ring->rxbufs);
}
if (dp->netdev) {
err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev,
rx_ring->idx, rx_ring->r_vec->napi.napi_id);
if (err < 0)
return err;
err = xdp_rxq_info_reg_mem_model(&rx_ring->xdp_rxq, mem_type, NULL);
if (err)
goto err_alloc;
}
rx_ring->cnt = dp->rxd_cnt;
rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds));
rx_ring->rxds = dma_alloc_coherent(dp->dev, rx_ring->size,
&rx_ring->dma,
GFP_KERNEL | __GFP_NOWARN);
if (!rx_ring->rxds) {
netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n",
rx_ring->cnt);
goto err_alloc;
}
if (nfp_net_has_xsk_pool_slow(dp, rx_ring->idx)) {
rx_ring->xsk_rxbufs = kvcalloc(rx_ring->cnt, rxbuf_sw_desc_sz,
GFP_KERNEL);
if (!rx_ring->xsk_rxbufs)
goto err_alloc;
} else {
rx_ring->rxbufs = kvcalloc(rx_ring->cnt, rxbuf_sw_desc_sz,
GFP_KERNEL);
if (!rx_ring->rxbufs)
goto err_alloc;
}
return 0;
err_alloc:
nfp_net_rx_ring_free(rx_ring);
return -ENOMEM;
}
int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp)
{
unsigned int r;
dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings),
GFP_KERNEL);
if (!dp->rx_rings)
return -ENOMEM;
for (r = 0; r < dp->num_rx_rings; r++) {
nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r);
if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r]))
goto err_free_prev;
if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r]))
goto err_free_ring;
}
return 0;
err_free_prev:
while (r--) {
nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
err_free_ring:
nfp_net_rx_ring_free(&dp->rx_rings[r]);
}
kfree(dp->rx_rings);
return -ENOMEM;
}
void nfp_net_rx_rings_free(struct nfp_net_dp *dp)
{
unsigned int r;
for (r = 0; r < dp->num_rx_rings; r++) {
nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]);
nfp_net_rx_ring_free(&dp->rx_rings[r]);
}
kfree(dp->rx_rings);
}
void
nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn,
struct nfp_net_rx_ring *rx_ring, unsigned int idx)
{
/* Write the DMA address, size and MSI-X info to the device */
nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma);
nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt));
nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry);
}
void
nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn,
struct nfp_net_tx_ring *tx_ring, unsigned int idx)
{
nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma);
if (tx_ring->txrwb) {
*tx_ring->txrwb = 0;
nn_writeq(nn, NFP_NET_CFG_TXR_WB_ADDR(idx),
nn->dp.txrwb_dma + idx * sizeof(u64));
}
nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt));
nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry);
}
void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx)
{
nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0);
nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0);
nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0);
nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0);
nn_writeq(nn, NFP_NET_CFG_TXR_WB_ADDR(idx), 0);
nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0);
nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0);
}
netdev_tx_t nfp_net_tx(struct sk_buff *skb, struct net_device *netdev)
{
struct nfp_net *nn = netdev_priv(netdev);
return nn->dp.ops->xmit(skb, netdev);
}
bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
{
struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
return nn->dp.ops->ctrl_tx_one(nn, r_vec, skb, false);
}
bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb)
{
struct nfp_net_r_vector *r_vec = &nn->r_vecs[0];
bool ret;
spin_lock_bh(&r_vec->lock);
ret = nn->dp.ops->ctrl_tx_one(nn, r_vec, skb, false);
spin_unlock_bh(&r_vec->lock);
return ret;
}
bool nfp_net_vlan_strip(struct sk_buff *skb, const struct nfp_net_rx_desc *rxd,
const struct nfp_meta_parsed *meta)
{
u16 tpid = 0, tci = 0;
if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) {
tpid = ETH_P_8021Q;
tci = le16_to_cpu(rxd->rxd.vlan);
} else if (meta->vlan.stripped) {
if (meta->vlan.tpid == NFP_NET_VLAN_CTAG)
tpid = ETH_P_8021Q;
else if (meta->vlan.tpid == NFP_NET_VLAN_STAG)
tpid = ETH_P_8021AD;
else
return false;
tci = meta->vlan.tci;
}
if (tpid)
__vlan_hwaccel_put_tag(skb, htons(tpid), tci);
return true;
}