linuxdebug/drivers/net/wireless/ath/ath5k/phy.c

3962 lines
108 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
* Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/***********************\
* PHY related functions *
\***********************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/delay.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
#include "ath5k.h"
#include "reg.h"
#include "rfbuffer.h"
#include "rfgain.h"
#include "../regd.h"
/**
* DOC: PHY related functions
*
* Here we handle the low-level functions related to baseband
* and analog frontend (RF) parts. This is by far the most complex
* part of the hw code so make sure you know what you are doing.
*
* Here is a list of what this is all about:
*
* - Channel setting/switching
*
* - Automatic Gain Control (AGC) calibration
*
* - Noise Floor calibration
*
* - I/Q imbalance calibration (QAM correction)
*
* - Calibration due to thermal changes (gain_F)
*
* - Spur noise mitigation
*
* - RF/PHY initialization for the various operating modes and bwmodes
*
* - Antenna control
*
* - TX power control per channel/rate/packet type
*
* Also have in mind we never got documentation for most of these
* functions, what we have comes mostly from Atheros's code, reverse
* engineering and patent docs/presentations etc.
*/
/******************\
* Helper functions *
\******************/
/**
* ath5k_hw_radio_revision() - Get the PHY Chip revision
* @ah: The &struct ath5k_hw
* @band: One of enum nl80211_band
*
* Returns the revision number of a 2GHz, 5GHz or single chip
* radio.
*/
u16
ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
{
unsigned int i;
u32 srev;
u16 ret;
/*
* Set the radio chip access register
*/
switch (band) {
case NL80211_BAND_2GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
break;
case NL80211_BAND_5GHZ:
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
break;
default:
return 0;
}
usleep_range(2000, 2500);
/* ...wait until PHY is ready and read the selected radio revision */
ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
for (i = 0; i < 8; i++)
ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
if (ah->ah_version == AR5K_AR5210) {
srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
} else {
srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
((srev & 0x0f) << 4), 8);
}
/* Reset to the 5GHz mode */
ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
return ret;
}
/**
* ath5k_channel_ok() - Check if a channel is supported by the hw
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Note: We don't do any regulatory domain checks here, it's just
* a sanity check.
*/
bool
ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
{
u16 freq = channel->center_freq;
/* Check if the channel is in our supported range */
if (channel->band == NL80211_BAND_2GHZ) {
if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
return true;
} else if (channel->band == NL80211_BAND_5GHZ)
if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
(freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
return true;
return false;
}
/**
* ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
bool
ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u8 refclk_freq;
if ((ah->ah_radio == AR5K_RF5112) ||
(ah->ah_radio == AR5K_RF5413) ||
(ah->ah_radio == AR5K_RF2413) ||
(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
refclk_freq = 40;
else
refclk_freq = 32;
if ((channel->center_freq % refclk_freq != 0) &&
((channel->center_freq % refclk_freq < 10) ||
(channel->center_freq % refclk_freq > 22)))
return true;
else
return false;
}
/**
* ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
* @ah: The &struct ath5k_hw
* @rf_regs: The struct ath5k_rf_reg
* @val: New value
* @reg_id: RF register ID
* @set: Indicate we need to swap data
*
* This is an internal function used to modify RF Banks before
* writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
* infos.
*/
static unsigned int
ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
u32 val, u8 reg_id, bool set)
{
const struct ath5k_rf_reg *rfreg = NULL;
u8 offset, bank, num_bits, col, position;
u16 entry;
u32 mask, data, last_bit, bits_shifted, first_bit;
u32 *rfb;
s32 bits_left;
int i;
data = 0;
rfb = ah->ah_rf_banks;
for (i = 0; i < ah->ah_rf_regs_count; i++) {
if (rf_regs[i].index == reg_id) {
rfreg = &rf_regs[i];
break;
}
}
if (rfb == NULL || rfreg == NULL) {
ATH5K_PRINTF("Rf register not found!\n");
/* should not happen */
return 0;
}
bank = rfreg->bank;
num_bits = rfreg->field.len;
first_bit = rfreg->field.pos;
col = rfreg->field.col;
/* first_bit is an offset from bank's
* start. Since we have all banks on
* the same array, we use this offset
* to mark each bank's start */
offset = ah->ah_offset[bank];
/* Boundary check */
if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
ATH5K_PRINTF("invalid values at offset %u\n", offset);
return 0;
}
entry = ((first_bit - 1) / 8) + offset;
position = (first_bit - 1) % 8;
if (set)
data = ath5k_hw_bitswap(val, num_bits);
for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
position = 0, entry++) {
last_bit = (position + bits_left > 8) ? 8 :
position + bits_left;
mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
(col * 8);
if (set) {
rfb[entry] &= ~mask;
rfb[entry] |= ((data << position) << (col * 8)) & mask;
data >>= (8 - position);
} else {
data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
<< bits_shifted;
bits_shifted += last_bit - position;
}
bits_left -= 8 - position;
}
data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
return data;
}
/**
* ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
* @ah: the &struct ath5k_hw
* @channel: the currently set channel upon reset
*
* Write the delta slope coefficient (used on pilot tracking ?) for OFDM
* operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
*
* Since delta slope is floating point we split it on its exponent and
* mantissa and provide these values on hw.
*
* For more infos i think this patent is related
* "http://www.freepatentsonline.com/7184495.html"
*/
static inline int
ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/* Get exponent and mantissa and set it */
u32 coef_scaled, coef_exp, coef_man,
ds_coef_exp, ds_coef_man, clock;
BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
(channel->hw_value == AR5K_MODE_11B));
/* Get coefficient
* ALGO: coef = (5 * clock / carrier_freq) / 2
* we scale coef by shifting clock value by 24 for
* better precision since we use integers */
switch (ah->ah_bwmode) {
case AR5K_BWMODE_40MHZ:
clock = 40 * 2;
break;
case AR5K_BWMODE_10MHZ:
clock = 40 / 2;
break;
case AR5K_BWMODE_5MHZ:
clock = 40 / 4;
break;
default:
clock = 40;
break;
}
coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
/* Get exponent
* ALGO: coef_exp = 14 - highest set bit position */
coef_exp = ilog2(coef_scaled);
/* Doesn't make sense if it's zero*/
if (!coef_scaled || !coef_exp)
return -EINVAL;
/* Note: we've shifted coef_scaled by 24 */
coef_exp = 14 - (coef_exp - 24);
/* Get mantissa (significant digits)
* ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
coef_man = coef_scaled +
(1 << (24 - coef_exp - 1));
/* Calculate delta slope coefficient exponent
* and mantissa (remove scaling) and set them on hw */
ds_coef_man = coef_man >> (24 - coef_exp);
ds_coef_exp = coef_exp - 16;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
return 0;
}
/**
* ath5k_hw_phy_disable() - Disable PHY
* @ah: The &struct ath5k_hw
*/
int ath5k_hw_phy_disable(struct ath5k_hw *ah)
{
/*Just a try M.F.*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
return 0;
}
/**
* ath5k_hw_wait_for_synth() - Wait for synth to settle
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
static void
ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
/*
* On 5211+ read activation -> rx delay
* and use it (100ns steps).
*/
if (ah->ah_version != AR5K_AR5210) {
u32 delay;
delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
AR5K_PHY_RX_DELAY_M;
delay = (channel->hw_value == AR5K_MODE_11B) ?
((delay << 2) / 22) : (delay / 10);
if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
delay = delay << 1;
if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
delay = delay << 2;
/* XXX: /2 on turbo ? Let's be safe
* for now */
usleep_range(100 + delay, 100 + (2 * delay));
} else {
usleep_range(1000, 1500);
}
}
/**********************\
* RF Gain optimization *
\**********************/
/**
* DOC: RF Gain optimization
*
* This code is used to optimize RF gain on different environments
* (temperature mostly) based on feedback from a power detector.
*
* It's only used on RF5111 and RF5112, later RF chips seem to have
* auto adjustment on hw -notice they have a much smaller BANK 7 and
* no gain optimization ladder-.
*
* For more infos check out this patent doc
* "http://www.freepatentsonline.com/7400691.html"
*
* This paper describes power drops as seen on the receiver due to
* probe packets
* "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
* %20of%20Power%20Control.pdf"
*
* And this is the MadWiFi bug entry related to the above
* "http://madwifi-project.org/ticket/1659"
* with various measurements and diagrams
*/
/**
* ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
* @ah: The &struct ath5k_hw
*/
int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
{
/* Initialize the gain optimization values */
switch (ah->ah_radio) {
case AR5K_RF5111:
ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
ah->ah_gain.g_low = 20;
ah->ah_gain.g_high = 35;
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
break;
case AR5K_RF5112:
ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
ah->ah_gain.g_low = 20;
ah->ah_gain.g_high = 85;
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
break;
default:
return -EINVAL;
}
return 0;
}
/**
* ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
* @ah: The &struct ath5k_hw
*
* Schedules a gain probe check on the next transmitted packet.
* That means our next packet is going to be sent with lower
* tx power and a Peak to Average Power Detector (PAPD) will try
* to measure the gain.
*
* TODO: Force a tx packet (bypassing PCU arbitrator etc)
* just after we enable the probe so that we don't mess with
* standard traffic.
*/
static void
ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
{
/* Skip if gain calibration is inactive or
* we already handle a probe request */
if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
return;
/* Send the packet with 2dB below max power as
* patent doc suggest */
ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
AR5K_PHY_PAPD_PROBE_TXPOWER) |
AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
}
/**
* ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
* @ah: The &struct ath5k_hw
*
* Calculate Gain_F measurement correction
* based on the current step for RF5112 rev. 2
*/
static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
{
u32 mix, step;
const struct ath5k_gain_opt *go;
const struct ath5k_gain_opt_step *g_step;
const struct ath5k_rf_reg *rf_regs;
/* Only RF5112 Rev. 2 supports it */
if ((ah->ah_radio != AR5K_RF5112) ||
(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
return 0;
go = &rfgain_opt_5112;
rf_regs = rf_regs_5112a;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
g_step = &go->go_step[ah->ah_gain.g_step_idx];
if (ah->ah_rf_banks == NULL)
return 0;
ah->ah_gain.g_f_corr = 0;
/* No VGA (Variable Gain Amplifier) override, skip */
if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
return 0;
/* Mix gain stepping */
step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
/* Mix gain override */
mix = g_step->gos_param[0];
switch (mix) {
case 3:
ah->ah_gain.g_f_corr = step * 2;
break;
case 2:
ah->ah_gain.g_f_corr = (step - 5) * 2;
break;
case 1:
ah->ah_gain.g_f_corr = step;
break;
default:
ah->ah_gain.g_f_corr = 0;
break;
}
return ah->ah_gain.g_f_corr;
}
/**
* ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
* @ah: The &struct ath5k_hw
*
* Check if current gain_F measurement is in the range of our
* power detector windows. If we get a measurement outside range
* we know it's not accurate (detectors can't measure anything outside
* their detection window) so we must ignore it.
*
* Returns true if readback was O.K. or false on failure
*/
static bool
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
{
const struct ath5k_rf_reg *rf_regs;
u32 step, mix_ovr, level[4];
if (ah->ah_rf_banks == NULL)
return false;
if (ah->ah_radio == AR5K_RF5111) {
rf_regs = rf_regs_5111;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
false);
level[0] = 0;
level[1] = (step == 63) ? 50 : step + 4;
level[2] = (step != 63) ? 64 : level[0];
level[3] = level[2] + 50;
ah->ah_gain.g_high = level[3] -
(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
ah->ah_gain.g_low = level[0] +
(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
} else {
rf_regs = rf_regs_5112;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
false);
level[0] = level[2] = 0;
if (mix_ovr == 1) {
level[1] = level[3] = 83;
} else {
level[1] = level[3] = 107;
ah->ah_gain.g_high = 55;
}
}
return (ah->ah_gain.g_current >= level[0] &&
ah->ah_gain.g_current <= level[1]) ||
(ah->ah_gain.g_current >= level[2] &&
ah->ah_gain.g_current <= level[3]);
}
/**
* ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
* @ah: The &struct ath5k_hw
*
* Choose the right target gain based on current gain
* and RF gain optimization ladder
*/
static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
{
const struct ath5k_gain_opt *go;
const struct ath5k_gain_opt_step *g_step;
int ret = 0;
switch (ah->ah_radio) {
case AR5K_RF5111:
go = &rfgain_opt_5111;
break;
case AR5K_RF5112:
go = &rfgain_opt_5112;
break;
default:
return 0;
}
g_step = &go->go_step[ah->ah_gain.g_step_idx];
if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
/* Reached maximum */
if (ah->ah_gain.g_step_idx == 0)
return -1;
for (ah->ah_gain.g_target = ah->ah_gain.g_current;
ah->ah_gain.g_target >= ah->ah_gain.g_high &&
ah->ah_gain.g_step_idx > 0;
g_step = &go->go_step[ah->ah_gain.g_step_idx])
ah->ah_gain.g_target -= 2 *
(go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
g_step->gos_gain);
ret = 1;
goto done;
}
if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
/* Reached minimum */
if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
return -2;
for (ah->ah_gain.g_target = ah->ah_gain.g_current;
ah->ah_gain.g_target <= ah->ah_gain.g_low &&
ah->ah_gain.g_step_idx < go->go_steps_count - 1;
g_step = &go->go_step[ah->ah_gain.g_step_idx])
ah->ah_gain.g_target -= 2 *
(go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
g_step->gos_gain);
ret = 2;
goto done;
}
done:
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"ret %d, gain step %u, current gain %u, target gain %u\n",
ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
ah->ah_gain.g_target);
return ret;
}
/**
* ath5k_hw_gainf_calibrate() - Do a gain_F calibration
* @ah: The &struct ath5k_hw
*
* Main callback for thermal RF gain calibration engine
* Check for a new gain reading and schedule an adjustment
* if needed.
*
* Returns one of enum ath5k_rfgain codes
*/
enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
{
u32 data, type;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
if (ah->ah_rf_banks == NULL ||
ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
return AR5K_RFGAIN_INACTIVE;
/* No check requested, either engine is inactive
* or an adjustment is already requested */
if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
goto done;
/* Read the PAPD (Peak to Average Power Detector)
* register */
data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
/* No probe is scheduled, read gain_F measurement */
if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
/* If tx packet is CCK correct the gain_F measurement
* by cck ofdm gain delta */
if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
ah->ah_gain.g_current +=
ee->ee_cck_ofdm_gain_delta;
else
ah->ah_gain.g_current +=
AR5K_GAIN_CCK_PROBE_CORR;
}
/* Further correct gain_F measurement for
* RF5112A radios */
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
ath5k_hw_rf_gainf_corr(ah);
ah->ah_gain.g_current =
ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
0;
}
/* Check if measurement is ok and if we need
* to adjust gain, schedule a gain adjustment,
* else switch back to the active state */
if (ath5k_hw_rf_check_gainf_readback(ah) &&
AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
ath5k_hw_rf_gainf_adjust(ah)) {
ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
} else {
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
}
done:
return ah->ah_gain.g_state;
}
/**
* ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
* @ah: The &struct ath5k_hw
* @band: One of enum nl80211_band
*
* Write initial RF gain table to set the RF sensitivity.
*
* NOTE: This one works on all RF chips and has nothing to do
* with Gain_F calibration
*/
static int
ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
{
const struct ath5k_ini_rfgain *ath5k_rfg;
unsigned int i, size, index;
switch (ah->ah_radio) {
case AR5K_RF5111:
ath5k_rfg = rfgain_5111;
size = ARRAY_SIZE(rfgain_5111);
break;
case AR5K_RF5112:
ath5k_rfg = rfgain_5112;
size = ARRAY_SIZE(rfgain_5112);
break;
case AR5K_RF2413:
ath5k_rfg = rfgain_2413;
size = ARRAY_SIZE(rfgain_2413);
break;
case AR5K_RF2316:
ath5k_rfg = rfgain_2316;
size = ARRAY_SIZE(rfgain_2316);
break;
case AR5K_RF5413:
ath5k_rfg = rfgain_5413;
size = ARRAY_SIZE(rfgain_5413);
break;
case AR5K_RF2317:
case AR5K_RF2425:
ath5k_rfg = rfgain_2425;
size = ARRAY_SIZE(rfgain_2425);
break;
default:
return -EINVAL;
}
index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
for (i = 0; i < size; i++) {
AR5K_REG_WAIT(i);
ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
(u32)ath5k_rfg[i].rfg_register);
}
return 0;
}
/********************\
* RF Registers setup *
\********************/
/**
* ath5k_hw_rfregs_init() - Initialize RF register settings
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @mode: One of enum ath5k_driver_mode
*
* Setup RF registers by writing RF buffer on hw. For
* more infos on this, check out rfbuffer.h
*/
static int
ath5k_hw_rfregs_init(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
unsigned int mode)
{
const struct ath5k_rf_reg *rf_regs;
const struct ath5k_ini_rfbuffer *ini_rfb;
const struct ath5k_gain_opt *go = NULL;
const struct ath5k_gain_opt_step *g_step;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 ee_mode = 0;
u32 *rfb;
int i, obdb = -1, bank = -1;
switch (ah->ah_radio) {
case AR5K_RF5111:
rf_regs = rf_regs_5111;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
ini_rfb = rfb_5111;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
go = &rfgain_opt_5111;
break;
case AR5K_RF5112:
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
rf_regs = rf_regs_5112a;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
ini_rfb = rfb_5112a;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
} else {
rf_regs = rf_regs_5112;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
ini_rfb = rfb_5112;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
}
go = &rfgain_opt_5112;
break;
case AR5K_RF2413:
rf_regs = rf_regs_2413;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
ini_rfb = rfb_2413;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
break;
case AR5K_RF2316:
rf_regs = rf_regs_2316;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
ini_rfb = rfb_2316;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
break;
case AR5K_RF5413:
rf_regs = rf_regs_5413;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
ini_rfb = rfb_5413;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
break;
case AR5K_RF2317:
rf_regs = rf_regs_2425;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
ini_rfb = rfb_2317;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
break;
case AR5K_RF2425:
rf_regs = rf_regs_2425;
ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
ini_rfb = rfb_2425;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
} else {
ini_rfb = rfb_2417;
ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
}
break;
default:
return -EINVAL;
}
/* If it's the first time we set RF buffer, allocate
* ah->ah_rf_banks based on ah->ah_rf_banks_size
* we set above */
if (ah->ah_rf_banks == NULL) {
ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
sizeof(u32),
GFP_KERNEL);
if (ah->ah_rf_banks == NULL) {
ATH5K_ERR(ah, "out of memory\n");
return -ENOMEM;
}
}
/* Copy values to modify them */
rfb = ah->ah_rf_banks;
for (i = 0; i < ah->ah_rf_banks_size; i++) {
if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
ATH5K_ERR(ah, "invalid bank\n");
return -EINVAL;
}
/* Bank changed, write down the offset */
if (bank != ini_rfb[i].rfb_bank) {
bank = ini_rfb[i].rfb_bank;
ah->ah_offset[bank] = i;
}
rfb[i] = ini_rfb[i].rfb_mode_data[mode];
}
/* Set Output and Driver bias current (OB/DB) */
if (channel->band == NL80211_BAND_2GHZ) {
if (channel->hw_value == AR5K_MODE_11B)
ee_mode = AR5K_EEPROM_MODE_11B;
else
ee_mode = AR5K_EEPROM_MODE_11G;
/* For RF511X/RF211X combination we
* use b_OB and b_DB parameters stored
* in eeprom on ee->ee_ob[ee_mode][0]
*
* For all other chips we use OB/DB for 2GHz
* stored in the b/g modal section just like
* 802.11a on ee->ee_ob[ee_mode][1] */
if ((ah->ah_radio == AR5K_RF5111) ||
(ah->ah_radio == AR5K_RF5112))
obdb = 0;
else
obdb = 1;
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
AR5K_RF_OB_2GHZ, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
AR5K_RF_DB_2GHZ, true);
/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
} else if ((channel->band == NL80211_BAND_5GHZ) ||
(ah->ah_radio == AR5K_RF5111)) {
/* For 11a, Turbo and XR we need to choose
* OB/DB based on frequency range */
ee_mode = AR5K_EEPROM_MODE_11A;
obdb = channel->center_freq >= 5725 ? 3 :
(channel->center_freq >= 5500 ? 2 :
(channel->center_freq >= 5260 ? 1 :
(channel->center_freq > 4000 ? 0 : -1)));
if (obdb < 0)
return -EINVAL;
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
AR5K_RF_OB_5GHZ, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
AR5K_RF_DB_5GHZ, true);
}
g_step = &go->go_step[ah->ah_gain.g_step_idx];
/* Set turbo mode (N/A on RF5413) */
if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
(ah->ah_radio != AR5K_RF5413))
ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
/* Bank Modifications (chip-specific) */
if (ah->ah_radio == AR5K_RF5111) {
/* Set gain_F settings according to current step */
if (channel->hw_value != AR5K_MODE_11B) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
AR5K_PHY_FRAME_CTL_TX_CLIP,
g_step->gos_param[0]);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
AR5K_RF_PWD_90, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
AR5K_RF_PWD_84, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
AR5K_RF_RFGAIN_SEL, true);
/* We programmed gain_F parameters, switch back
* to active state */
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
/* Bank 6/7 setup */
ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
AR5K_RF_PWD_XPD, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
AR5K_RF_XPD_GAIN, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
AR5K_RF_GAIN_I, true);
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
AR5K_RF_PLO_SEL, true);
/* Tweak power detectors for half/quarter rate support */
if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
u8 wait_i;
ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
AR5K_RF_WAIT_S, true);
wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
0x1f : 0x10;
ath5k_hw_rfb_op(ah, rf_regs, wait_i,
AR5K_RF_WAIT_I, true);
ath5k_hw_rfb_op(ah, rf_regs, 3,
AR5K_RF_MAX_TIME, true);
}
}
if (ah->ah_radio == AR5K_RF5112) {
/* Set gain_F settings according to current step */
if (channel->hw_value != AR5K_MODE_11B) {
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
AR5K_RF_MIXGAIN_OVR, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
AR5K_RF_PWD_138, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
AR5K_RF_PWD_137, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
AR5K_RF_PWD_136, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
AR5K_RF_PWD_132, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
AR5K_RF_PWD_131, true);
ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
AR5K_RF_PWD_130, true);
/* We programmed gain_F parameters, switch back
* to active state */
ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
}
/* Bank 6/7 setup */
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
AR5K_RF_XPD_SEL, true);
if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
/* Rev. 1 supports only one xpd */
ath5k_hw_rfb_op(ah, rf_regs,
ee->ee_x_gain[ee_mode],
AR5K_RF_XPD_GAIN, true);
} else {
u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
if (ee->ee_pd_gains[ee_mode] > 1) {
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[0],
AR5K_RF_PD_GAIN_LO, true);
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[1],
AR5K_RF_PD_GAIN_HI, true);
} else {
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[0],
AR5K_RF_PD_GAIN_LO, true);
ath5k_hw_rfb_op(ah, rf_regs,
pdg_curve_to_idx[0],
AR5K_RF_PD_GAIN_HI, true);
}
/* Lower synth voltage on Rev 2 */
if (ah->ah_radio == AR5K_RF5112 &&
(ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_HIGH_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_MID_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_LOW_VC_CP, true);
ath5k_hw_rfb_op(ah, rf_regs, 2,
AR5K_RF_PUSH_UP, true);
}
/* Decrease power consumption on 5213+ BaseBand */
if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PAD2GND, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_XB2_LVL, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_XB5_LVL, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PWD_167, true);
ath5k_hw_rfb_op(ah, rf_regs, 1,
AR5K_RF_PWD_166, true);
}
}
ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
AR5K_RF_GAIN_I, true);
/* Tweak power detector for half/quarter rates */
if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
u8 pd_delay;
pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
0xf : 0x8;
ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
AR5K_RF_PD_PERIOD_A, true);
ath5k_hw_rfb_op(ah, rf_regs, 0xf,
AR5K_RF_PD_DELAY_A, true);
}
}
if (ah->ah_radio == AR5K_RF5413 &&
channel->band == NL80211_BAND_2GHZ) {
ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
true);
/* Set optimum value for early revisions (on pci-e chips) */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
ah->ah_mac_srev < AR5K_SREV_AR5413)
ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
AR5K_RF_PWD_ICLOBUF_2G, true);
}
/* Write RF banks on hw */
for (i = 0; i < ah->ah_rf_banks_size; i++) {
AR5K_REG_WAIT(i);
ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
}
return 0;
}
/**************************\
PHY/RF channel functions
\**************************/
/**
* ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
* @channel: The &struct ieee80211_channel
*
* Map channel frequency to IEEE channel number and convert it
* to an internal channel value used by the RF5110 chipset.
*/
static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
{
u32 athchan;
athchan = (ath5k_hw_bitswap(
(ieee80211_frequency_to_channel(
channel->center_freq) - 24) / 2, 5)
<< 1) | (1 << 6) | 0x1;
return athchan;
}
/**
* ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
static int
ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data;
/*
* Set the channel and wait
*/
data = ath5k_hw_rf5110_chan2athchan(channel);
ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
usleep_range(1000, 1500);
return 0;
}
/**
* ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
* @ieee: IEEE channel number
* @athchan: The &struct ath5k_athchan_2ghz
*
* In order to enable the RF2111 frequency converter on RF5111/2111 setups
* we need to add some offsets and extra flags to the data values we pass
* on to the PHY. So for every 2GHz channel this function gets called
* to do the conversion.
*/
static int
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
struct ath5k_athchan_2ghz *athchan)
{
int channel;
/* Cast this value to catch negative channel numbers (>= -19) */
channel = (int)ieee;
/*
* Map 2GHz IEEE channel to 5GHz Atheros channel
*/
if (channel <= 13) {
athchan->a2_athchan = 115 + channel;
athchan->a2_flags = 0x46;
} else if (channel == 14) {
athchan->a2_athchan = 124;
athchan->a2_flags = 0x44;
} else if (channel >= 15 && channel <= 26) {
athchan->a2_athchan = ((channel - 14) * 4) + 132;
athchan->a2_flags = 0x46;
} else
return -EINVAL;
return 0;
}
/**
* ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*/
static int
ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath5k_athchan_2ghz ath5k_channel_2ghz;
unsigned int ath5k_channel =
ieee80211_frequency_to_channel(channel->center_freq);
u32 data0, data1, clock;
int ret;
/*
* Set the channel on the RF5111 radio
*/
data0 = data1 = 0;
if (channel->band == NL80211_BAND_2GHZ) {
/* Map 2GHz channel to 5GHz Atheros channel ID */
ret = ath5k_hw_rf5111_chan2athchan(
ieee80211_frequency_to_channel(channel->center_freq),
&ath5k_channel_2ghz);
if (ret)
return ret;
ath5k_channel = ath5k_channel_2ghz.a2_athchan;
data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
<< 5) | (1 << 4);
}
if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
clock = 1;
data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
(clock << 1) | (1 << 10) | 1;
} else {
clock = 0;
data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
<< 2) | (clock << 1) | (1 << 10) | 1;
}
ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
AR5K_RF_BUFFER_CONTROL_3);
return 0;
}
/**
* ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* On RF5112/2112 and newer we don't need to do any conversion.
* We pass the frequency value after a few modifications to the
* chip directly.
*
* NOTE: Make sure channel frequency given is within our range or else
* we might damage the chip ! Use ath5k_channel_ok before calling this one.
*/
static int
ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data, data0, data1, data2;
u16 c;
data = data0 = data1 = data2 = 0;
c = channel->center_freq;
/* My guess based on code:
* 2GHz RF has 2 synth modes, one with a Local Oscillator
* at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
* (3040/2). data0 is used to set the PLL divider and data1
* selects synth mode. */
if (c < 4800) {
/* Channel 14 and all frequencies with 2Hz spacing
* below/above (non-standard channels) */
if (!((c - 2224) % 5)) {
/* Same as (c - 2224) / 5 */
data0 = ((2 * (c - 704)) - 3040) / 10;
data1 = 1;
/* Channel 1 and all frequencies with 5Hz spacing
* below/above (standard channels without channel 14) */
} else if (!((c - 2192) % 5)) {
/* Same as (c - 2192) / 5 */
data0 = ((2 * (c - 672)) - 3040) / 10;
data1 = 0;
} else
return -EINVAL;
data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
/* This is more complex, we have a single synthesizer with
* 4 reference clock settings (?) based on frequency spacing
* and set using data2. LO is at 4800Hz and data0 is again used
* to set some divider.
*
* NOTE: There is an old atheros presentation at Stanford
* that mentions a method called dual direct conversion
* with 1GHz sliding IF for RF5110. Maybe that's what we
* have here, or an updated version. */
} else if ((c % 5) != 2 || c > 5435) {
if (!(c % 20) && c >= 5120) {
data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
data2 = ath5k_hw_bitswap(3, 2);
} else if (!(c % 10)) {
data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
data2 = ath5k_hw_bitswap(2, 2);
} else if (!(c % 5)) {
data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
data2 = ath5k_hw_bitswap(1, 2);
} else
return -EINVAL;
} else {
data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
data2 = ath5k_hw_bitswap(0, 2);
}
data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
return 0;
}
/**
* ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* AR2425/2417 have a different 2GHz RF so code changes
* a little bit from RF5112.
*/
static int
ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 data, data0, data2;
u16 c;
data = data0 = data2 = 0;
c = channel->center_freq;
if (c < 4800) {
data0 = ath5k_hw_bitswap((c - 2272), 8);
data2 = 0;
/* ? 5GHz ? */
} else if ((c % 5) != 2 || c > 5435) {
if (!(c % 20) && c < 5120)
data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
else if (!(c % 10))
data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
else if (!(c % 5))
data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
else
return -EINVAL;
data2 = ath5k_hw_bitswap(1, 2);
} else {
data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
data2 = ath5k_hw_bitswap(0, 2);
}
data = (data0 << 4) | data2 << 2 | 0x1001;
ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
return 0;
}
/**
* ath5k_hw_channel() - Set a channel on the radio chip
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* This is the main function called to set a channel on the
* radio chip based on the radio chip version.
*/
static int
ath5k_hw_channel(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
int ret;
/*
* Check bounds supported by the PHY (we don't care about regulatory
* restrictions at this point).
*/
if (!ath5k_channel_ok(ah, channel)) {
ATH5K_ERR(ah,
"channel frequency (%u MHz) out of supported "
"band range\n",
channel->center_freq);
return -EINVAL;
}
/*
* Set the channel and wait
*/
switch (ah->ah_radio) {
case AR5K_RF5110:
ret = ath5k_hw_rf5110_channel(ah, channel);
break;
case AR5K_RF5111:
ret = ath5k_hw_rf5111_channel(ah, channel);
break;
case AR5K_RF2317:
case AR5K_RF2425:
ret = ath5k_hw_rf2425_channel(ah, channel);
break;
default:
ret = ath5k_hw_rf5112_channel(ah, channel);
break;
}
if (ret)
return ret;
/* Set JAPAN setting for channel 14 */
if (channel->center_freq == 2484) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
AR5K_PHY_CCKTXCTL_JAPAN);
} else {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
AR5K_PHY_CCKTXCTL_WORLD);
}
ah->ah_current_channel = channel;
return 0;
}
/*****************\
PHY calibration
\*****************/
/**
* DOC: PHY Calibration routines
*
* Noise floor calibration: When we tell the hardware to
* perform a noise floor calibration by setting the
* AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
* sample-and-hold the minimum noise level seen at the antennas.
* This value is then stored in a ring buffer of recently measured
* noise floor values so we have a moving window of the last few
* samples. The median of the values in the history is then loaded
* into the hardware for its own use for RSSI and CCA measurements.
* This type of calibration doesn't interfere with traffic.
*
* AGC calibration: When we tell the hardware to perform
* an AGC (Automatic Gain Control) calibration by setting the
* AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
* a calibration on the DC offsets of ADCs. During this period
* rx/tx gets disabled so we have to deal with it on the driver
* part.
*
* I/Q calibration: When we tell the hardware to perform
* an I/Q calibration, it tries to correct I/Q imbalance and
* fix QAM constellation by sampling data from rxed frames.
* It doesn't interfere with traffic.
*
* For more infos on AGC and I/Q calibration check out patent doc
* #03/094463.
*/
/**
* ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
* @ah: The &struct ath5k_hw
*/
static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
{
s32 val;
val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
}
/**
* ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
* @ah: The &struct ath5k_hw
*/
void
ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
{
int i;
ah->ah_nfcal_hist.index = 0;
for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
}
/**
* ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
* @ah: The &struct ath5k_hw
* @noise_floor: The NF we got from hw
*/
static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
{
struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
hist->nfval[hist->index] = noise_floor;
}
/**
* ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
* @ah: The &struct ath5k_hw
*/
static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
{
s16 sort[ATH5K_NF_CAL_HIST_MAX];
s16 tmp;
int i, j;
memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
if (sort[j] > sort[j - 1]) {
tmp = sort[j];
sort[j] = sort[j - 1];
sort[j - 1] = tmp;
}
}
}
for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"cal %d:%d\n", i, sort[i]);
}
return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
}
/**
* ath5k_hw_update_noise_floor() - Update NF on hardware
* @ah: The &struct ath5k_hw
*
* This is the main function we call to perform a NF calibration,
* it reads NF from hardware, calculates the median and updates
* NF on hw.
*/
void
ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 val;
s16 nf, threshold;
u8 ee_mode;
/* keep last value if calibration hasn't completed */
if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"NF did not complete in calibration window\n");
return;
}
ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
/* completed NF calibration, test threshold */
nf = ath5k_hw_read_measured_noise_floor(ah);
threshold = ee->ee_noise_floor_thr[ee_mode];
if (nf > threshold) {
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"noise floor failure detected; "
"read %d, threshold %d\n",
nf, threshold);
nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
}
ath5k_hw_update_nfcal_hist(ah, nf);
nf = ath5k_hw_get_median_noise_floor(ah);
/* load noise floor (in .5 dBm) so the hardware will use it */
val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
val |= (nf * 2) & AR5K_PHY_NF_M;
ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
0, false);
/*
* Load a high max CCA Power value (-50 dBm in .5 dBm units)
* so that we're not capped by the median we just loaded.
* This will be used as the initial value for the next noise
* floor calibration.
*/
val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_NF_EN |
AR5K_PHY_AGCCTL_NF_NOUPDATE |
AR5K_PHY_AGCCTL_NF);
ah->ah_noise_floor = nf;
ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"noise floor calibrated: %d\n", nf);
}
/**
* ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
*/
static int
ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
u32 phy_sig, phy_agc, phy_sat, beacon;
int ret;
if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
return 0;
/*
* Disable beacons and RX/TX queues, wait
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
usleep_range(2000, 2500);
/*
* Set the channel (with AGC turned off)
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
udelay(10);
ret = ath5k_hw_channel(ah, channel);
/*
* Activate PHY and wait
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
usleep_range(1000, 1500);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
if (ret)
return ret;
/*
* Calibrate the radio chip
*/
/* Remember normal state */
phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
/* Update radio registers */
ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
AR5K_PHY_AGCCOARSE_LO)) |
AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
AR5K_PHY_ADCSAT_THR)) |
AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
udelay(20);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
udelay(10);
ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
usleep_range(1000, 1500);
/*
* Enable calibration and wait until completion
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false);
/* Reset to normal state */
ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
if (ret) {
ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
channel->center_freq);
return ret;
}
/*
* Re-enable RX/TX and beacons
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
return 0;
}
/**
* ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
* @ah: The &struct ath5k_hw
*/
static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
{
u32 i_pwr, q_pwr;
s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
int i;
/* Skip if I/Q calibration is not needed or if it's still running */
if (!ah->ah_iq_cal_needed)
return -EINVAL;
else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"I/Q calibration still running");
return -EBUSY;
}
/* Calibration has finished, get the results and re-run */
/* Work around for empty results which can apparently happen on 5212:
* Read registers up to 10 times until we get both i_pr and q_pwr */
for (i = 0; i <= 10; i++) {
iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
if (i_pwr && q_pwr)
break;
}
i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
if (ah->ah_version == AR5K_AR5211)
q_coffd = q_pwr >> 6;
else
q_coffd = q_pwr >> 7;
/* In case i_coffd became zero, cancel calibration
* not only it's too small, it'll also result a divide
* by zero later on. */
if (i_coffd == 0 || q_coffd < 2)
return -ECANCELED;
/* Protect against loss of sign bits */
i_coff = (-iq_corr) / i_coffd;
i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
if (ah->ah_version == AR5K_AR5211)
q_coff = (i_pwr / q_coffd) - 64;
else
q_coff = (i_pwr / q_coffd) - 128;
q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
i_coff, q_coff, i_coffd, q_coffd);
/* Commit new I/Q values (set enable bit last to match HAL sources) */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
/* Re-enable calibration -if we don't we'll commit
* the same values again and again */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
return 0;
}
/**
* ath5k_hw_phy_calibrate() - Perform a PHY calibration
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* The main function we call from above to perform
* a short or full PHY calibration based on RF chip
* and current channel
*/
int
ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
int ret;
if (ah->ah_radio == AR5K_RF5110)
return ath5k_hw_rf5110_calibrate(ah, channel);
ret = ath5k_hw_rf511x_iq_calibrate(ah);
if (ret) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
"No I/Q correction performed (%uMHz)\n",
channel->center_freq);
/* Happens all the time if there is not much
* traffic, consider it normal behaviour. */
ret = 0;
}
/* On full calibration request a PAPD probe for
* gainf calibration if needed */
if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
(ah->ah_radio == AR5K_RF5111 ||
ah->ah_radio == AR5K_RF5112) &&
channel->hw_value != AR5K_MODE_11B)
ath5k_hw_request_rfgain_probe(ah);
/* Update noise floor */
if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
ath5k_hw_update_noise_floor(ah);
return ret;
}
/***************************\
* Spur mitigation functions *
\***************************/
/**
* ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* This function gets called during PHY initialization to
* configure the spur filter for the given channel. Spur is noise
* generated due to "reflection" effects, for more information on this
* method check out patent US7643810
*/
static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 mag_mask[4] = {0, 0, 0, 0};
u32 pilot_mask[2] = {0, 0};
/* Note: fbin values are scaled up by 2 */
u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
s32 spur_delta_phase, spur_freq_sigma_delta;
s32 spur_offset, num_symbols_x16;
u8 num_symbol_offsets, i, freq_band;
/* Convert current frequency to fbin value (the same way channels
* are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
* up by 2 so we can compare it later */
if (channel->band == NL80211_BAND_2GHZ) {
chan_fbin = (channel->center_freq - 2300) * 10;
freq_band = AR5K_EEPROM_BAND_2GHZ;
} else {
chan_fbin = (channel->center_freq - 4900) * 10;
freq_band = AR5K_EEPROM_BAND_5GHZ;
}
/* Check if any spur_chan_fbin from EEPROM is
* within our current channel's spur detection range */
spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
/* XXX: Half/Quarter channels ?*/
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
spur_detection_window *= 2;
for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
* so it's zero if we got nothing from EEPROM */
if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
break;
}
if ((chan_fbin - spur_detection_window <=
(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
(chan_fbin + spur_detection_window >=
(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
break;
}
}
/* We need to enable spur filter for this channel */
if (spur_chan_fbin) {
spur_offset = spur_chan_fbin - chan_fbin;
/*
* Calculate deltas:
* spur_freq_sigma_delta -> spur_offset / sample_freq << 21
* spur_delta_phase -> spur_offset / chip_freq << 11
* Note: Both values have 100Hz resolution
*/
switch (ah->ah_bwmode) {
case AR5K_BWMODE_40MHZ:
/* Both sample_freq and chip_freq are 80MHz */
spur_delta_phase = (spur_offset << 16) / 25;
spur_freq_sigma_delta = (spur_delta_phase >> 10);
symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
break;
case AR5K_BWMODE_10MHZ:
/* Both sample_freq and chip_freq are 20MHz (?) */
spur_delta_phase = (spur_offset << 18) / 25;
spur_freq_sigma_delta = (spur_delta_phase >> 10);
symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
break;
case AR5K_BWMODE_5MHZ:
/* Both sample_freq and chip_freq are 10MHz (?) */
spur_delta_phase = (spur_offset << 19) / 25;
spur_freq_sigma_delta = (spur_delta_phase >> 10);
symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
break;
default:
if (channel->band == NL80211_BAND_5GHZ) {
/* Both sample_freq and chip_freq are 40MHz */
spur_delta_phase = (spur_offset << 17) / 25;
spur_freq_sigma_delta =
(spur_delta_phase >> 10);
symbol_width =
AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
} else {
/* sample_freq -> 40MHz chip_freq -> 44MHz
* (for b compatibility) */
spur_delta_phase = (spur_offset << 17) / 25;
spur_freq_sigma_delta =
(spur_offset << 8) / 55;
symbol_width =
AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
}
break;
}
/* Calculate pilot and magnitude masks */
/* Scale up spur_offset by 1000 to switch to 100HZ resolution
* and divide by symbol_width to find how many symbols we have
* Note: number of symbols is scaled up by 16 */
num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
if (!(num_symbols_x16 & 0xF))
/* _X_ */
num_symbol_offsets = 3;
else
/* _xx_ */
num_symbol_offsets = 4;
for (i = 0; i < num_symbol_offsets; i++) {
/* Calculate pilot mask */
s32 curr_sym_off =
(num_symbols_x16 / 16) + i + 25;
/* Pilot magnitude mask seems to be a way to
* declare the boundaries for our detection
* window or something, it's 2 for the middle
* value(s) where the symbol is expected to be
* and 1 on the boundary values */
u8 plt_mag_map =
(i == 0 || i == (num_symbol_offsets - 1))
? 1 : 2;
if (curr_sym_off >= 0 && curr_sym_off <= 32) {
if (curr_sym_off <= 25)
pilot_mask[0] |= 1 << curr_sym_off;
else if (curr_sym_off >= 27)
pilot_mask[0] |= 1 << (curr_sym_off - 1);
} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
pilot_mask[1] |= 1 << (curr_sym_off - 33);
/* Calculate magnitude mask (for viterbi decoder) */
if (curr_sym_off >= -1 && curr_sym_off <= 14)
mag_mask[0] |=
plt_mag_map << (curr_sym_off + 1) * 2;
else if (curr_sym_off >= 15 && curr_sym_off <= 30)
mag_mask[1] |=
plt_mag_map << (curr_sym_off - 15) * 2;
else if (curr_sym_off >= 31 && curr_sym_off <= 46)
mag_mask[2] |=
plt_mag_map << (curr_sym_off - 31) * 2;
else if (curr_sym_off >= 47 && curr_sym_off <= 53)
mag_mask[3] |=
plt_mag_map << (curr_sym_off - 47) * 2;
}
/* Write settings on hw to enable spur filter */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
/* XXX: Self correlator also ? */
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_PILOT_MASK_EN |
AR5K_PHY_IQ_CHAN_MASK_EN |
AR5K_PHY_IQ_SPUR_FILT_EN);
/* Set delta phase and freq sigma delta */
ath5k_hw_reg_write(ah,
AR5K_REG_SM(spur_delta_phase,
AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
AR5K_REG_SM(spur_freq_sigma_delta,
AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
AR5K_PHY_TIMING_11);
/* Write pilot masks */
ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
AR5K_PHY_TIMING_8_PILOT_MASK_2,
pilot_mask[1]);
ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
AR5K_PHY_TIMING_10_PILOT_MASK_2,
pilot_mask[1]);
/* Write magnitude masks */
ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_MASK_4,
mag_mask[3]);
ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
AR5K_PHY_BIN_MASK2_4_MASK_4,
mag_mask[3]);
} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
AR5K_PHY_IQ_SPUR_FILT_EN) {
/* Clean up spur mitigation settings and disable filter */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_RATE, 0);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_PILOT_MASK_EN |
AR5K_PHY_IQ_CHAN_MASK_EN |
AR5K_PHY_IQ_SPUR_FILT_EN);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
/* Clear pilot masks */
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
AR5K_PHY_TIMING_8_PILOT_MASK_2,
0);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
AR5K_PHY_TIMING_10_PILOT_MASK_2,
0);
/* Clear magnitude masks */
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
AR5K_PHY_BIN_MASK_CTL_MASK_4,
0);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
AR5K_PHY_BIN_MASK2_4_MASK_4,
0);
}
}
/*****************\
* Antenna control *
\*****************/
/**
* DOC: Antenna control
*
* Hw supports up to 14 antennas ! I haven't found any card that implements
* that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
* for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
* omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
*
* We can have a single antenna for RX and multiple antennas for TX.
* RX antenna is our "default" antenna (usually antenna 1) set on
* DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
* (0 for automatic selection, 1 - 14 antenna number).
*
* We can let hw do all the work doing fast antenna diversity for both
* tx and rx or we can do things manually. Here are the options we have
* (all are bits of STA_ID1 register):
*
* AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
* control descriptor, use the default antenna to transmit or else use the last
* antenna on which we received an ACK.
*
* AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
* the antenna on which we got the ACK for that frame.
*
* AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
* one on the TX descriptor.
*
* AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
* (ACKs etc), or else use current antenna (the one we just used for TX).
*
* Using the above we support the following scenarios:
*
* AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
*
* AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
*
* AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
*
* AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
*
* AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
*
* AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
*
* AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
*
* Also note that when setting antenna to F on tx descriptor card inverts
* current tx antenna.
*/
/**
* ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
* @ah: The &struct ath5k_hw
* @ant: Antenna number
*/
static void
ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
{
if (ah->ah_version != AR5K_AR5210)
ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
}
/**
* ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
* @enable: True to enable, false to disable
*/
static void
ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
{
switch (ee_mode) {
case AR5K_EEPROM_MODE_11G:
/* XXX: This is set to
* disabled on initvals !!! */
case AR5K_EEPROM_MODE_11A:
if (enable)
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
else
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
break;
case AR5K_EEPROM_MODE_11B:
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
break;
default:
return;
}
if (enable) {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
AR5K_PHY_RESTART_DIV_GC, 4);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
AR5K_PHY_FAST_ANT_DIV_EN);
} else {
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
AR5K_PHY_RESTART_DIV_GC, 0);
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
AR5K_PHY_FAST_ANT_DIV_EN);
}
}
/**
* ath5k_hw_set_antenna_switch() - Set up antenna switch table
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
*
* Switch table comes from EEPROM and includes information on controlling
* the 2 antenna RX attenuators
*/
void
ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
{
u8 ant0, ant1;
/*
* In case a fixed antenna was set as default
* use the same switch table twice.
*/
if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
ant0 = ant1 = AR5K_ANT_SWTABLE_A;
else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
ant0 = ant1 = AR5K_ANT_SWTABLE_B;
else {
ant0 = AR5K_ANT_SWTABLE_A;
ant1 = AR5K_ANT_SWTABLE_B;
}
/* Set antenna idle switch table */
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
AR5K_PHY_ANT_CTL_TXRX_EN));
/* Set antenna switch tables */
ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
AR5K_PHY_ANT_SWITCH_TABLE_0);
ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
AR5K_PHY_ANT_SWITCH_TABLE_1);
}
/**
* ath5k_hw_set_antenna_mode() - Set antenna operating mode
* @ah: The &struct ath5k_hw
* @ant_mode: One of enum ath5k_ant_mode
*/
void
ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
{
struct ieee80211_channel *channel = ah->ah_current_channel;
bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
bool use_def_for_sg;
int ee_mode;
u8 def_ant, tx_ant;
u32 sta_id1 = 0;
/* if channel is not initialized yet we can't set the antennas
* so just store the mode. it will be set on the next reset */
if (channel == NULL) {
ah->ah_ant_mode = ant_mode;
return;
}
def_ant = ah->ah_def_ant;
ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
switch (ant_mode) {
case AR5K_ANTMODE_DEFAULT:
tx_ant = 0;
use_def_for_tx = false;
update_def_on_tx = false;
use_def_for_rts = false;
use_def_for_sg = false;
fast_div = true;
break;
case AR5K_ANTMODE_FIXED_A:
def_ant = 1;
tx_ant = 1;
use_def_for_tx = true;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = true;
fast_div = false;
break;
case AR5K_ANTMODE_FIXED_B:
def_ant = 2;
tx_ant = 2;
use_def_for_tx = true;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = true;
fast_div = false;
break;
case AR5K_ANTMODE_SINGLE_AP:
def_ant = 1; /* updated on tx */
tx_ant = 0;
use_def_for_tx = true;
update_def_on_tx = true;
use_def_for_rts = true;
use_def_for_sg = true;
fast_div = true;
break;
case AR5K_ANTMODE_SECTOR_AP:
tx_ant = 1; /* variable */
use_def_for_tx = false;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = false;
fast_div = false;
break;
case AR5K_ANTMODE_SECTOR_STA:
tx_ant = 1; /* variable */
use_def_for_tx = true;
update_def_on_tx = false;
use_def_for_rts = true;
use_def_for_sg = false;
fast_div = true;
break;
case AR5K_ANTMODE_DEBUG:
def_ant = 1;
tx_ant = 2;
use_def_for_tx = false;
update_def_on_tx = false;
use_def_for_rts = false;
use_def_for_sg = false;
fast_div = false;
break;
default:
return;
}
ah->ah_tx_ant = tx_ant;
ah->ah_ant_mode = ant_mode;
ah->ah_def_ant = def_ant;
sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
if (sta_id1)
AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
ath5k_hw_set_antenna_switch(ah, ee_mode);
/* Note: set diversity before default antenna
* because it won't work correctly */
ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
ath5k_hw_set_def_antenna(ah, def_ant);
}
/****************\
* TX power setup *
\****************/
/*
* Helper functions
*/
/**
* ath5k_get_interpolated_value() - Get interpolated Y val between two points
* @target: X value of the middle point
* @x_left: X value of the left point
* @x_right: X value of the right point
* @y_left: Y value of the left point
* @y_right: Y value of the right point
*/
static s16
ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
s16 y_left, s16 y_right)
{
s16 ratio, result;
/* Avoid divide by zero and skip interpolation
* if we have the same point */
if ((x_left == x_right) || (y_left == y_right))
return y_left;
/*
* Since we use ints and not fps, we need to scale up in
* order to get a sane ratio value (or else we 'll eg. get
* always 1 instead of 1.25, 1.75 etc). We scale up by 100
* to have some accuracy both for 0.5 and 0.25 steps.
*/
ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
/* Now scale down to be in range */
result = y_left + (ratio * (target - x_left) / 100);
return result;
}
/**
* ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
* linear PCDAC curve
* @stepL: Left array with y values (pcdac steps)
* @stepR: Right array with y values (pcdac steps)
* @pwrL: Left array with x values (power steps)
* @pwrR: Right array with x values (power steps)
*
* Since we have the top of the curve and we draw the line below
* until we reach 1 (1 pcdac step) we need to know which point
* (x value) that is so that we don't go below x axis and have negative
* pcdac values when creating the curve, or fill the table with zeros.
*/
static s16
ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
const s16 *pwrL, const s16 *pwrR)
{
s8 tmp;
s16 min_pwrL, min_pwrR;
s16 pwr_i;
/* Some vendors write the same pcdac value twice !!! */
if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
return max(pwrL[0], pwrR[0]);
if (pwrL[0] == pwrL[1])
min_pwrL = pwrL[0];
else {
pwr_i = pwrL[0];
do {
pwr_i--;
tmp = (s8) ath5k_get_interpolated_value(pwr_i,
pwrL[0], pwrL[1],
stepL[0], stepL[1]);
} while (tmp > 1);
min_pwrL = pwr_i;
}
if (pwrR[0] == pwrR[1])
min_pwrR = pwrR[0];
else {
pwr_i = pwrR[0];
do {
pwr_i--;
tmp = (s8) ath5k_get_interpolated_value(pwr_i,
pwrR[0], pwrR[1],
stepR[0], stepR[1]);
} while (tmp > 1);
min_pwrR = pwr_i;
}
/* Keep the right boundary so that it works for both curves */
return max(min_pwrL, min_pwrR);
}
/**
* ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
* @pmin: Minimum power value (xmin)
* @pmax: Maximum power value (xmax)
* @pwr: Array of power steps (x values)
* @vpd: Array of matching PCDAC/PDADC steps (y values)
* @num_points: Number of provided points
* @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
* @type: One of enum ath5k_powertable_type (eeprom.h)
*
* Interpolate (pwr,vpd) points to create a Power to PDADC or a
* Power to PCDAC curve.
*
* Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
* steps (offsets) on y axis. Power can go up to 31.5dB and max
* PCDAC/PDADC step for each curve is 64 but we can write more than
* one curves on hw so we can go up to 128 (which is the max step we
* can write on the final table).
*
* We write y values (PCDAC/PDADC steps) on hw.
*/
static void
ath5k_create_power_curve(s16 pmin, s16 pmax,
const s16 *pwr, const u8 *vpd,
u8 num_points,
u8 *vpd_table, u8 type)
{
u8 idx[2] = { 0, 1 };
s16 pwr_i = 2 * pmin;
int i;
if (num_points < 2)
return;
/* We want the whole line, so adjust boundaries
* to cover the entire power range. Note that
* power values are already 0.25dB so no need
* to multiply pwr_i by 2 */
if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
pwr_i = pmin;
pmin = 0;
pmax = 63;
}
/* Find surrounding turning points (TPs)
* and interpolate between them */
for (i = 0; (i <= (u16) (pmax - pmin)) &&
(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
/* We passed the right TP, move to the next set of TPs
* if we pass the last TP, extrapolate above using the last
* two TPs for ratio */
if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
idx[0]++;
idx[1]++;
}
vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
pwr[idx[0]], pwr[idx[1]],
vpd[idx[0]], vpd[idx[1]]);
/* Increase by 0.5dB
* (0.25 dB units) */
pwr_i += 2;
}
}
/**
* ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
* for a given channel.
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
* @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
*
* Get the surrounding per-channel power calibration piers
* for a given frequency so that we can interpolate between
* them and come up with an appropriate dataset for our current
* channel.
*/
static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
struct ath5k_chan_pcal_info **pcinfo_l,
struct ath5k_chan_pcal_info **pcinfo_r)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcinfo;
u8 idx_l, idx_r;
u8 mode, max, i;
u32 target = channel->center_freq;
idx_l = 0;
idx_r = 0;
switch (channel->hw_value) {
case AR5K_EEPROM_MODE_11A:
pcinfo = ee->ee_pwr_cal_a;
mode = AR5K_EEPROM_MODE_11A;
break;
case AR5K_EEPROM_MODE_11B:
pcinfo = ee->ee_pwr_cal_b;
mode = AR5K_EEPROM_MODE_11B;
break;
case AR5K_EEPROM_MODE_11G:
default:
pcinfo = ee->ee_pwr_cal_g;
mode = AR5K_EEPROM_MODE_11G;
break;
}
max = ee->ee_n_piers[mode] - 1;
/* Frequency is below our calibrated
* range. Use the lowest power curve
* we have */
if (target < pcinfo[0].freq) {
idx_l = idx_r = 0;
goto done;
}
/* Frequency is above our calibrated
* range. Use the highest power curve
* we have */
if (target > pcinfo[max].freq) {
idx_l = idx_r = max;
goto done;
}
/* Frequency is inside our calibrated
* channel range. Pick the surrounding
* calibration piers so that we can
* interpolate */
for (i = 0; i <= max; i++) {
/* Frequency matches one of our calibration
* piers, no need to interpolate, just use
* that calibration pier */
if (pcinfo[i].freq == target) {
idx_l = idx_r = i;
goto done;
}
/* We found a calibration pier that's above
* frequency, use this pier and the previous
* one to interpolate */
if (target < pcinfo[i].freq) {
idx_r = i;
idx_l = idx_r - 1;
goto done;
}
}
done:
*pcinfo_l = &pcinfo[idx_l];
*pcinfo_r = &pcinfo[idx_r];
}
/**
* ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
* calibration data
* @ah: The &struct ath5k_hw *ah,
* @channel: The &struct ieee80211_channel
* @rates: The &struct ath5k_rate_pcal_info to fill
*
* Get the surrounding per-rate power calibration data
* for a given frequency and interpolate between power
* values to set max target power supported by hw for
* each rate on this frequency.
*/
static void
ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
struct ath5k_rate_pcal_info *rates)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_rate_pcal_info *rpinfo;
u8 idx_l, idx_r;
u8 mode, max, i;
u32 target = channel->center_freq;
idx_l = 0;
idx_r = 0;
switch (channel->hw_value) {
case AR5K_MODE_11A:
rpinfo = ee->ee_rate_tpwr_a;
mode = AR5K_EEPROM_MODE_11A;
break;
case AR5K_MODE_11B:
rpinfo = ee->ee_rate_tpwr_b;
mode = AR5K_EEPROM_MODE_11B;
break;
case AR5K_MODE_11G:
default:
rpinfo = ee->ee_rate_tpwr_g;
mode = AR5K_EEPROM_MODE_11G;
break;
}
max = ee->ee_rate_target_pwr_num[mode] - 1;
/* Get the surrounding calibration
* piers - same as above */
if (target < rpinfo[0].freq) {
idx_l = idx_r = 0;
goto done;
}
if (target > rpinfo[max].freq) {
idx_l = idx_r = max;
goto done;
}
for (i = 0; i <= max; i++) {
if (rpinfo[i].freq == target) {
idx_l = idx_r = i;
goto done;
}
if (target < rpinfo[i].freq) {
idx_r = i;
idx_l = idx_r - 1;
goto done;
}
}
done:
/* Now interpolate power value, based on the frequency */
rates->freq = target;
rates->target_power_6to24 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_6to24,
rpinfo[idx_r].target_power_6to24);
rates->target_power_36 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_36,
rpinfo[idx_r].target_power_36);
rates->target_power_48 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_48,
rpinfo[idx_r].target_power_48);
rates->target_power_54 =
ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
rpinfo[idx_r].freq,
rpinfo[idx_l].target_power_54,
rpinfo[idx_r].target_power_54);
}
/**
* ath5k_get_max_ctl_power() - Get max edge power for a given frequency
* @ah: the &struct ath5k_hw
* @channel: The &struct ieee80211_channel
*
* Get the max edge power for this channel if
* we have such data from EEPROM's Conformance Test
* Limits (CTL), and limit max power if needed.
*/
static void
ath5k_get_max_ctl_power(struct ath5k_hw *ah,
struct ieee80211_channel *channel)
{
struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
u8 *ctl_val = ee->ee_ctl;
s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
s16 edge_pwr = 0;
u8 rep_idx;
u8 i, ctl_mode;
u8 ctl_idx = 0xFF;
u32 target = channel->center_freq;
ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
switch (channel->hw_value) {
case AR5K_MODE_11A:
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
ctl_mode |= AR5K_CTL_TURBO;
else
ctl_mode |= AR5K_CTL_11A;
break;
case AR5K_MODE_11G:
if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
ctl_mode |= AR5K_CTL_TURBOG;
else
ctl_mode |= AR5K_CTL_11G;
break;
case AR5K_MODE_11B:
ctl_mode |= AR5K_CTL_11B;
break;
default:
return;
}
for (i = 0; i < ee->ee_ctls; i++) {
if (ctl_val[i] == ctl_mode) {
ctl_idx = i;
break;
}
}
/* If we have a CTL dataset available grab it and find the
* edge power for our frequency */
if (ctl_idx == 0xFF)
return;
/* Edge powers are sorted by frequency from lower
* to higher. Each CTL corresponds to 8 edge power
* measurements. */
rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
/* Don't do boundaries check because we
* might have more that one bands defined
* for this mode */
/* Get the edge power that's closer to our
* frequency */
for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
rep_idx += i;
if (target <= rep[rep_idx].freq)
edge_pwr = (s16) rep[rep_idx].edge;
}
if (edge_pwr)
ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
}
/*
* Power to PCDAC table functions
*/
/**
* DOC: Power to PCDAC table functions
*
* For RF5111 we have an XPD -eXternal Power Detector- curve
* for each calibrated channel. Each curve has 0,5dB Power steps
* on x axis and PCDAC steps (offsets) on y axis and looks like an
* exponential function. To recreate the curve we read 11 points
* from eeprom (eeprom.c) and interpolate here.
*
* For RF5112 we have 4 XPD -eXternal Power Detector- curves
* for each calibrated channel on 0, -6, -12 and -18dBm but we only
* use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
* power steps on x axis and PCDAC steps on y axis and looks like a
* linear function. To recreate the curve and pass the power values
* on hw, we get 4 points for xpd 0 (lower gain -> max power)
* and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
* and interpolate here.
*
* For a given channel we get the calibrated points (piers) for it or
* -if we don't have calibration data for this specific channel- from the
* available surrounding channels we have calibration data for, after we do a
* linear interpolation between them. Then since we have our calibrated points
* for this channel, we do again a linear interpolation between them to get the
* whole curve.
*
* We finally write the Y values of the curve(s) (the PCDAC values) on hw
*/
/**
* ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
* @ah: The &struct ath5k_hw
* @table_min: Minimum power (x min)
* @table_max: Maximum power (x max)
*
* No further processing is needed for RF5111, the only thing we have to
* do is fill the values below and above calibration range since eeprom data
* may not cover the entire PCDAC table.
*/
static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
s16 *table_max)
{
u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
s16 min_pwr, max_pwr;
/* Get table boundaries */
min_pwr = table_min[0];
pcdac_0 = pcdac_tmp[0];
max_pwr = table_max[0];
pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
/* Extrapolate below minimum using pcdac_0 */
pcdac_i = 0;
for (i = 0; i < min_pwr; i++)
pcdac_out[pcdac_i++] = pcdac_0;
/* Copy values from pcdac_tmp */
pwr_idx = min_pwr;
for (i = 0; pwr_idx <= max_pwr &&
pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
pcdac_out[pcdac_i++] = pcdac_tmp[i];
pwr_idx++;
}
/* Extrapolate above maximum */
while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
pcdac_out[pcdac_i++] = pcdac_n;
}
/**
* ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
* @ah: The &struct ath5k_hw
* @table_min: Minimum power (x min)
* @table_max: Maximum power (x max)
* @pdcurves: Number of pd curves
*
* Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
* RFX112 can have up to 2 curves (one for low txpower range and one for
* higher txpower range). We need to put them both on pcdac_out and place
* them in the correct location. In case we only have one curve available
* just fit it on pcdac_out (it's supposed to cover the entire range of
* available pwr levels since it's always the higher power curve). Extrapolate
* below and above final table if needed.
*/
static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
s16 *table_max, u8 pdcurves)
{
u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
u8 *pcdac_low_pwr;
u8 *pcdac_high_pwr;
u8 *pcdac_tmp;
u8 pwr;
s16 max_pwr_idx;
s16 min_pwr_idx;
s16 mid_pwr_idx = 0;
/* Edge flag turns on the 7nth bit on the PCDAC
* to declare the higher power curve (force values
* to be greater than 64). If we only have one curve
* we don't need to set this, if we have 2 curves and
* fill the table backwards this can also be used to
* switch from higher power curve to lower power curve */
u8 edge_flag;
int i;
/* When we have only one curve available
* that's the higher power curve. If we have
* two curves the first is the high power curve
* and the next is the low power curve. */
if (pdcurves > 1) {
pcdac_low_pwr = ah->ah_txpower.tmpL[1];
pcdac_high_pwr = ah->ah_txpower.tmpL[0];
mid_pwr_idx = table_max[1] - table_min[1] - 1;
max_pwr_idx = (table_max[0] - table_min[0]) / 2;
/* If table size goes beyond 31.5dB, keep the
* upper 31.5dB range when setting tx power.
* Note: 126 = 31.5 dB in quarter dB steps */
if (table_max[0] - table_min[1] > 126)
min_pwr_idx = table_max[0] - 126;
else
min_pwr_idx = table_min[1];
/* Since we fill table backwards
* start from high power curve */
pcdac_tmp = pcdac_high_pwr;
edge_flag = 0x40;
} else {
pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
pcdac_high_pwr = ah->ah_txpower.tmpL[0];
min_pwr_idx = table_min[0];
max_pwr_idx = (table_max[0] - table_min[0]) / 2;
pcdac_tmp = pcdac_high_pwr;
edge_flag = 0;
}
/* This is used when setting tx power*/
ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
/* Fill Power to PCDAC table backwards */
pwr = max_pwr_idx;
for (i = 63; i >= 0; i--) {
/* Entering lower power range, reset
* edge flag and set pcdac_tmp to lower
* power curve.*/
if (edge_flag == 0x40 &&
(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
edge_flag = 0x00;
pcdac_tmp = pcdac_low_pwr;
pwr = mid_pwr_idx / 2;
}
/* Don't go below 1, extrapolate below if we have
* already switched to the lower power curve -or
* we only have one curve and edge_flag is zero
* anyway */
if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
while (i >= 0) {
pcdac_out[i] = pcdac_out[i + 1];
i--;
}
break;
}
pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
/* Extrapolate above if pcdac is greater than
* 126 -this can happen because we OR pcdac_out
* value with edge_flag on high power curve */
if (pcdac_out[i] > 126)
pcdac_out[i] = 126;
/* Decrease by a 0.5dB step */
pwr--;
}
}
/**
* ath5k_write_pcdac_table() - Write the PCDAC values on hw
* @ah: The &struct ath5k_hw
*/
static void
ath5k_write_pcdac_table(struct ath5k_hw *ah)
{
u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
int i;
/*
* Write TX power values
*/
for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
ath5k_hw_reg_write(ah,
(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
AR5K_PHY_PCDAC_TXPOWER(i));
}
}
/*
* Power to PDADC table functions
*/
/**
* DOC: Power to PDADC table functions
*
* For RF2413 and later we have a Power to PDADC table (Power Detector)
* instead of a PCDAC (Power Control) and 4 pd gain curves for each
* calibrated channel. Each curve has power on x axis in 0.5 db steps and
* PDADC steps on y axis and looks like an exponential function like the
* RF5111 curve.
*
* To recreate the curves we read the points from eeprom (eeprom.c)
* and interpolate here. Note that in most cases only 2 (higher and lower)
* curves are used (like RF5112) but vendors have the opportunity to include
* all 4 curves on eeprom. The final curve (higher power) has an extra
* point for better accuracy like RF5112.
*
* The process is similar to what we do above for RF5111/5112
*/
/**
* ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
* @ah: The &struct ath5k_hw
* @pwr_min: Minimum power (x min)
* @pwr_max: Maximum power (x max)
* @pdcurves: Number of available curves
*
* Combine the various pd curves and create the final Power to PDADC table
* We can have up to 4 pd curves, we need to do a similar process
* as we do for RF5112. This time we don't have an edge_flag but we
* set the gain boundaries on a separate register.
*/
static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
{
u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
u8 *pdadc_tmp;
s16 pdadc_0;
u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
u8 pd_gain_overlap;
/* Note: Register value is initialized on initvals
* there is no feedback from hw.
* XXX: What about pd_gain_overlap from EEPROM ? */
pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
/* Create final PDADC table */
for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
pdadc_tmp = ah->ah_txpower.tmpL[pdg];
if (pdg == pdcurves - 1)
/* 2 dB boundary stretch for last
* (higher power) curve */
gain_boundaries[pdg] = pwr_max[pdg] + 4;
else
/* Set gain boundary in the middle
* between this curve and the next one */
gain_boundaries[pdg] =
(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
/* Sanity check in case our 2 db stretch got out of
* range. */
if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
/* For the first curve (lower power)
* start from 0 dB */
if (pdg == 0)
pdadc_0 = 0;
else
/* For the other curves use the gain overlap */
pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
pd_gain_overlap;
/* Force each power step to be at least 0.5 dB */
if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
else
pwr_step = 1;
/* If pdadc_0 is negative, we need to extrapolate
* below this pdgain by a number of pwr_steps */
while ((pdadc_0 < 0) && (pdadc_i < 128)) {
s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
pdadc_0++;
}
/* Set last pwr level, using gain boundaries */
pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
/* Limit it to be inside pwr range */
table_size = pwr_max[pdg] - pwr_min[pdg];
max_idx = min(pdadc_n, table_size);
/* Fill pdadc_out table */
while (pdadc_0 < max_idx && pdadc_i < 128)
pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
/* Need to extrapolate above this pdgain? */
if (pdadc_n <= max_idx)
continue;
/* Force each power step to be at least 0.5 dB */
if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
pwr_step = pdadc_tmp[table_size - 1] -
pdadc_tmp[table_size - 2];
else
pwr_step = 1;
/* Extrapolate above */
while ((pdadc_0 < (s16) pdadc_n) &&
(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
s16 tmp = pdadc_tmp[table_size - 1] +
(pdadc_0 - max_idx) * pwr_step;
pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
pdadc_0++;
}
}
while (pdg < AR5K_EEPROM_N_PD_GAINS) {
gain_boundaries[pdg] = gain_boundaries[pdg - 1];
pdg++;
}
while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
pdadc_i++;
}
/* Set gain boundaries */
ath5k_hw_reg_write(ah,
AR5K_REG_SM(pd_gain_overlap,
AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
AR5K_REG_SM(gain_boundaries[0],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
AR5K_REG_SM(gain_boundaries[1],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
AR5K_REG_SM(gain_boundaries[2],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
AR5K_REG_SM(gain_boundaries[3],
AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
AR5K_PHY_TPC_RG5);
/* Used for setting rate power table */
ah->ah_txpower.txp_min_idx = pwr_min[0];
}
/**
* ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
*/
static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
u8 pdcurves = ee->ee_pd_gains[ee_mode];
u32 reg;
u8 i;
/* Select the right pdgain curves */
/* Clear current settings */
reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
AR5K_PHY_TPC_RG1_PDGAIN_2 |
AR5K_PHY_TPC_RG1_PDGAIN_3 |
AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
/*
* Use pd_gains curve from eeprom
*
* This overrides the default setting from initvals
* in case some vendors (e.g. Zcomax) don't use the default
* curves. If we don't honor their settings we 'll get a
* 5dB (1 * gain overlap ?) drop.
*/
reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
switch (pdcurves) {
case 3:
reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
fallthrough;
case 2:
reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
fallthrough;
case 1:
reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
break;
}
ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
/*
* Write TX power values
*/
for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
}
}
/*
* Common code for PCDAC/PDADC tables
*/
/**
* ath5k_setup_channel_powertable() - Set up power table for this channel
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @ee_mode: One of enum ath5k_driver_mode
* @type: One of enum ath5k_powertable_type (eeprom.h)
*
* This is the main function that uses all of the above
* to set PCDAC/PDADC table on hw for the current channel.
* This table is used for tx power calibration on the baseband,
* without it we get weird tx power levels and in some cases
* distorted spectral mask
*/
static int
ath5k_setup_channel_powertable(struct ath5k_hw *ah,
struct ieee80211_channel *channel,
u8 ee_mode, u8 type)
{
struct ath5k_pdgain_info *pdg_L, *pdg_R;
struct ath5k_chan_pcal_info *pcinfo_L;
struct ath5k_chan_pcal_info *pcinfo_R;
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
s16 table_min[AR5K_EEPROM_N_PD_GAINS];
s16 table_max[AR5K_EEPROM_N_PD_GAINS];
u8 *tmpL;
u8 *tmpR;
u32 target = channel->center_freq;
int pdg, i;
/* Get surrounding freq piers for this channel */
ath5k_get_chan_pcal_surrounding_piers(ah, channel,
&pcinfo_L,
&pcinfo_R);
/* Loop over pd gain curves on
* surrounding freq piers by index */
for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
/* Fill curves in reverse order
* from lower power (max gain)
* to higher power. Use curve -> idx
* backmapping we did on eeprom init */
u8 idx = pdg_curve_to_idx[pdg];
/* Grab the needed curves by index */
pdg_L = &pcinfo_L->pd_curves[idx];
pdg_R = &pcinfo_R->pd_curves[idx];
/* Initialize the temp tables */
tmpL = ah->ah_txpower.tmpL[pdg];
tmpR = ah->ah_txpower.tmpR[pdg];
/* Set curve's x boundaries and create
* curves so that they cover the same
* range (if we don't do that one table
* will have values on some range and the
* other one won't have any so interpolation
* will fail) */
table_min[pdg] = min(pdg_L->pd_pwr[0],
pdg_R->pd_pwr[0]) / 2;
table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
/* Now create the curves on surrounding channels
* and interpolate if needed to get the final
* curve for this gain on this channel */
switch (type) {
case AR5K_PWRTABLE_LINEAR_PCDAC:
/* Override min/max so that we don't loose
* accuracy (don't divide by 2) */
table_min[pdg] = min(pdg_L->pd_pwr[0],
pdg_R->pd_pwr[0]);
table_max[pdg] =
max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
pdg_R->pd_pwr[pdg_R->pd_points - 1]);
/* Override minimum so that we don't get
* out of bounds while extrapolating
* below. Don't do this when we have 2
* curves and we are on the high power curve
* because table_min is ok in this case */
if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
table_min[pdg] =
ath5k_get_linear_pcdac_min(pdg_L->pd_step,
pdg_R->pd_step,
pdg_L->pd_pwr,
pdg_R->pd_pwr);
/* Don't go too low because we will
* miss the upper part of the curve.
* Note: 126 = 31.5dB (max power supported)
* in 0.25dB units */
if (table_max[pdg] - table_min[pdg] > 126)
table_min[pdg] = table_max[pdg] - 126;
}
fallthrough;
case AR5K_PWRTABLE_PWR_TO_PCDAC:
case AR5K_PWRTABLE_PWR_TO_PDADC:
ath5k_create_power_curve(table_min[pdg],
table_max[pdg],
pdg_L->pd_pwr,
pdg_L->pd_step,
pdg_L->pd_points, tmpL, type);
/* We are in a calibration
* pier, no need to interpolate
* between freq piers */
if (pcinfo_L == pcinfo_R)
continue;
ath5k_create_power_curve(table_min[pdg],
table_max[pdg],
pdg_R->pd_pwr,
pdg_R->pd_step,
pdg_R->pd_points, tmpR, type);
break;
default:
return -EINVAL;
}
/* Interpolate between curves
* of surrounding freq piers to
* get the final curve for this
* pd gain. Re-use tmpL for interpolation
* output */
for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
tmpL[i] = (u8) ath5k_get_interpolated_value(target,
(s16) pcinfo_L->freq,
(s16) pcinfo_R->freq,
(s16) tmpL[i],
(s16) tmpR[i]);
}
}
/* Now we have a set of curves for this
* channel on tmpL (x range is table_max - table_min
* and y values are tmpL[pdg][]) sorted in the same
* order as EEPROM (because we've used the backmapping).
* So for RF5112 it's from higher power to lower power
* and for RF2413 it's from lower power to higher power.
* For RF5111 we only have one curve. */
/* Fill min and max power levels for this
* channel by interpolating the values on
* surrounding channels to complete the dataset */
ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
(s16) pcinfo_L->freq,
(s16) pcinfo_R->freq,
pcinfo_L->min_pwr, pcinfo_R->min_pwr);
ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
(s16) pcinfo_L->freq,
(s16) pcinfo_R->freq,
pcinfo_L->max_pwr, pcinfo_R->max_pwr);
/* Fill PCDAC/PDADC table */
switch (type) {
case AR5K_PWRTABLE_LINEAR_PCDAC:
/* For RF5112 we can have one or two curves
* and each curve covers a certain power lvl
* range so we need to do some more processing */
ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
ee->ee_pd_gains[ee_mode]);
/* Set txp.offset so that we can
* match max power value with max
* table index */
ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
break;
case AR5K_PWRTABLE_PWR_TO_PCDAC:
/* We are done for RF5111 since it has only
* one curve, just fit the curve on the table */
ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
/* No rate powertable adjustment for RF5111 */
ah->ah_txpower.txp_min_idx = 0;
ah->ah_txpower.txp_offset = 0;
break;
case AR5K_PWRTABLE_PWR_TO_PDADC:
/* Set PDADC boundaries and fill
* final PDADC table */
ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
ee->ee_pd_gains[ee_mode]);
/* Set txp.offset, note that table_min
* can be negative */
ah->ah_txpower.txp_offset = table_min[0];
break;
default:
return -EINVAL;
}
ah->ah_txpower.txp_setup = true;
return 0;
}
/**
* ath5k_write_channel_powertable() - Set power table for current channel on hw
* @ah: The &struct ath5k_hw
* @ee_mode: One of enum ath5k_driver_mode
* @type: One of enum ath5k_powertable_type (eeprom.h)
*/
static void
ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
{
if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
else
ath5k_write_pcdac_table(ah);
}
/**
* DOC: Per-rate tx power setting
*
* This is the code that sets the desired tx power limit (below
* maximum) on hw for each rate (we also have TPC that sets
* power per packet type). We do that by providing an index on the
* PCDAC/PDADC table we set up above, for each rate.
*
* For now we only limit txpower based on maximum tx power
* supported by hw (what's inside rate_info) + conformance test
* limits. We need to limit this even more, based on regulatory domain
* etc to be safe. Normally this is done from above so we don't care
* here, all we care is that the tx power we set will be O.K.
* for the hw (e.g. won't create noise on PA etc).
*
* Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
* x values) and is indexed as follows:
* rates[0] - rates[7] -> OFDM rates
* rates[8] - rates[14] -> CCK rates
* rates[15] -> XR rates (they all have the same power)
*/
/**
* ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
* @ah: The &struct ath5k_hw
* @max_pwr: The maximum tx power requested in 0.5dB steps
* @rate_info: The &struct ath5k_rate_pcal_info to fill
* @ee_mode: One of enum ath5k_driver_mode
*/
static void
ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
struct ath5k_rate_pcal_info *rate_info,
u8 ee_mode)
{
unsigned int i;
u16 *rates;
s16 rate_idx_scaled = 0;
/* max_pwr is power level we got from driver/user in 0.5dB
* units, switch to 0.25dB units so we can compare */
max_pwr *= 2;
max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
/* apply rate limits */
rates = ah->ah_txpower.txp_rates_power_table;
/* OFDM rates 6 to 24Mb/s */
for (i = 0; i < 5; i++)
rates[i] = min(max_pwr, rate_info->target_power_6to24);
/* Rest OFDM rates */
rates[5] = min(rates[0], rate_info->target_power_36);
rates[6] = min(rates[0], rate_info->target_power_48);
rates[7] = min(rates[0], rate_info->target_power_54);
/* CCK rates */
/* 1L */
rates[8] = min(rates[0], rate_info->target_power_6to24);
/* 2L */
rates[9] = min(rates[0], rate_info->target_power_36);
/* 2S */
rates[10] = min(rates[0], rate_info->target_power_36);
/* 5L */
rates[11] = min(rates[0], rate_info->target_power_48);
/* 5S */
rates[12] = min(rates[0], rate_info->target_power_48);
/* 11L */
rates[13] = min(rates[0], rate_info->target_power_54);
/* 11S */
rates[14] = min(rates[0], rate_info->target_power_54);
/* XR rates */
rates[15] = min(rates[0], rate_info->target_power_6to24);
/* CCK rates have different peak to average ratio
* so we have to tweak their power so that gainf
* correction works ok. For this we use OFDM to
* CCK delta from eeprom */
if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
for (i = 8; i <= 15; i++)
rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
/* Save min/max and current tx power for this channel
* in 0.25dB units.
*
* Note: We use rates[0] for current tx power because
* it covers most of the rates, in most cases. It's our
* tx power limit and what the user expects to see. */
ah->ah_txpower.txp_min_pwr = 2 * rates[7];
ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
/* Set max txpower for correct OFDM operation on all rates
* -that is the txpower for 54Mbit-, it's used for the PAPD
* gain probe and it's in 0.5dB units */
ah->ah_txpower.txp_ofdm = rates[7];
/* Now that we have all rates setup use table offset to
* match the power range set by user with the power indices
* on PCDAC/PDADC table */
for (i = 0; i < 16; i++) {
rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
/* Don't get out of bounds */
if (rate_idx_scaled > 63)
rate_idx_scaled = 63;
if (rate_idx_scaled < 0)
rate_idx_scaled = 0;
rates[i] = rate_idx_scaled;
}
}
/**
* ath5k_hw_txpower() - Set transmission power limit for a given channel
* @ah: The &struct ath5k_hw
* @channel: The &struct ieee80211_channel
* @txpower: Requested tx power in 0.5dB steps
*
* Combines all of the above to set the requested tx power limit
* on hw.
*/
static int
ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 txpower)
{
struct ath5k_rate_pcal_info rate_info;
struct ieee80211_channel *curr_channel = ah->ah_current_channel;
int ee_mode;
u8 type;
int ret;
if (txpower > AR5K_TUNE_MAX_TXPOWER) {
ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
return -EINVAL;
}
ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
/* Initialize TX power table */
switch (ah->ah_radio) {
case AR5K_RF5110:
/* TODO */
return 0;
case AR5K_RF5111:
type = AR5K_PWRTABLE_PWR_TO_PCDAC;
break;
case AR5K_RF5112:
type = AR5K_PWRTABLE_LINEAR_PCDAC;
break;
case AR5K_RF2413:
case AR5K_RF5413:
case AR5K_RF2316:
case AR5K_RF2317:
case AR5K_RF2425:
type = AR5K_PWRTABLE_PWR_TO_PDADC;
break;
default:
return -EINVAL;
}
/*
* If we don't change channel/mode skip tx powertable calculation
* and use the cached one.
*/
if (!ah->ah_txpower.txp_setup ||
(channel->hw_value != curr_channel->hw_value) ||
(channel->center_freq != curr_channel->center_freq)) {
/* Reset TX power values but preserve requested
* tx power from above */
int requested_txpower = ah->ah_txpower.txp_requested;
memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
/* Restore TPC setting and requested tx power */
ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
ah->ah_txpower.txp_requested = requested_txpower;
/* Calculate the powertable */
ret = ath5k_setup_channel_powertable(ah, channel,
ee_mode, type);
if (ret)
return ret;
}
/* Write table on hw */
ath5k_write_channel_powertable(ah, ee_mode, type);
/* Limit max power if we have a CTL available */
ath5k_get_max_ctl_power(ah, channel);
/* FIXME: Antenna reduction stuff */
/* FIXME: Limit power on turbo modes */
/* FIXME: TPC scale reduction */
/* Get surrounding channels for per-rate power table
* calibration */
ath5k_get_rate_pcal_data(ah, channel, &rate_info);
/* Setup rate power table */
ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
/* Write rate power table on hw */
ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
/* FIXME: TPC support */
if (ah->ah_txpower.txp_tpc) {
ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
ath5k_hw_reg_write(ah,
AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
AR5K_TPC);
} else {
ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
AR5K_PHY_TXPOWER_RATE_MAX);
}
return 0;
}
/**
* ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
* @ah: The &struct ath5k_hw
* @txpower: The requested tx power limit in 0.5dB steps
*
* This function provides access to ath5k_hw_txpower to the driver in
* case user or an application changes it while PHY is running.
*/
int
ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
{
ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
"changing txpower to %d\n", txpower);
return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
}
/*************\
Init function
\*************/
/**
* ath5k_hw_phy_init() - Initialize PHY
* @ah: The &struct ath5k_hw
* @channel: The @struct ieee80211_channel
* @mode: One of enum ath5k_driver_mode
* @fast: Try a fast channel switch instead
*
* This is the main function used during reset to initialize PHY
* or do a fast channel change if possible.
*
* NOTE: Do not call this one from the driver, it assumes PHY is in a
* warm reset state !
*/
int
ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
u8 mode, bool fast)
{
struct ieee80211_channel *curr_channel;
int ret, i;
u32 phy_tst1;
ret = 0;
/*
* Sanity check for fast flag
* Don't try fast channel change when changing modulation
* mode/band. We check for chip compatibility on
* ath5k_hw_reset.
*/
curr_channel = ah->ah_current_channel;
if (fast && (channel->hw_value != curr_channel->hw_value))
return -EINVAL;
/*
* On fast channel change we only set the synth parameters
* while PHY is running, enable calibration and skip the rest.
*/
if (fast) {
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
AR5K_PHY_RFBUS_REQ_REQUEST);
for (i = 0; i < 100; i++) {
if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
break;
udelay(5);
}
/* Failed */
if (i >= 100)
return -EIO;
/* Set channel and wait for synth */
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
ath5k_hw_wait_for_synth(ah, channel);
}
/*
* Set TX power
*
* Note: We need to do that before we set
* RF buffer settings on 5211/5212+ so that we
* properly set curve indices.
*/
ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
ah->ah_txpower.txp_requested * 2 :
AR5K_TUNE_MAX_TXPOWER);
if (ret)
return ret;
/* Write OFDM timings on 5212*/
if (ah->ah_version == AR5K_AR5212 &&
channel->hw_value != AR5K_MODE_11B) {
ret = ath5k_hw_write_ofdm_timings(ah, channel);
if (ret)
return ret;
/* Spur info is available only from EEPROM versions
* greater than 5.3, but the EEPROM routines will use
* static values for older versions */
if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
ath5k_hw_set_spur_mitigation_filter(ah,
channel);
}
/* If we used fast channel switching
* we are done, release RF bus and
* fire up NF calibration.
*
* Note: Only NF calibration due to
* channel change, not AGC calibration
* since AGC is still running !
*/
if (fast) {
/*
* Release RF Bus grant
*/
AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
AR5K_PHY_RFBUS_REQ_REQUEST);
/*
* Start NF calibration
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_NF);
return ret;
}
/*
* For 5210 we do all initialization using
* initvals, so we don't have to modify
* any settings (5210 also only supports
* a/aturbo modes)
*/
if (ah->ah_version != AR5K_AR5210) {
/*
* Write initial RF gain settings
* This should work for both 5111/5112
*/
ret = ath5k_hw_rfgain_init(ah, channel->band);
if (ret)
return ret;
usleep_range(1000, 1500);
/*
* Write RF buffer
*/
ret = ath5k_hw_rfregs_init(ah, channel, mode);
if (ret)
return ret;
/*Enable/disable 802.11b mode on 5111
(enable 2111 frequency converter + CCK)*/
if (ah->ah_radio == AR5K_RF5111) {
if (mode == AR5K_MODE_11B)
AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
else
AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
AR5K_TXCFG_B_MODE);
}
} else if (ah->ah_version == AR5K_AR5210) {
usleep_range(1000, 1500);
/* Disable phy and wait */
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
usleep_range(1000, 1500);
}
/* Set channel on PHY */
ret = ath5k_hw_channel(ah, channel);
if (ret)
return ret;
/*
* Enable the PHY and wait until completion
* This includes BaseBand and Synthesizer
* activation.
*/
ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
ath5k_hw_wait_for_synth(ah, channel);
/*
* Perform ADC test to see if baseband is ready
* Set tx hold and check adc test register
*/
phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
for (i = 0; i <= 20; i++) {
if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
break;
usleep_range(200, 250);
}
ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
/*
* Start automatic gain control calibration
*
* During AGC calibration RX path is re-routed to
* a power detector so we don't receive anything.
*
* This method is used to calibrate some static offsets
* used together with on-the fly I/Q calibration (the
* one performed via ath5k_hw_phy_calibrate), which doesn't
* interrupt rx path.
*
* While rx path is re-routed to the power detector we also
* start a noise floor calibration to measure the
* card's noise floor (the noise we measure when we are not
* transmitting or receiving anything).
*
* If we are in a noisy environment, AGC calibration may time
* out and/or noise floor calibration might timeout.
*/
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
/* At the same time start I/Q calibration for QAM constellation
* -no need for CCK- */
ah->ah_iq_cal_needed = false;
if (!(mode == AR5K_MODE_11B)) {
ah->ah_iq_cal_needed = true;
AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
AR5K_PHY_IQ_RUN);
}
/* Wait for gain calibration to finish (we check for I/Q calibration
* during ath5k_phy_calibrate) */
if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
AR5K_PHY_AGCCTL_CAL, 0, false)) {
ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
channel->center_freq);
}
/* Restore antenna mode */
ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
return ret;
}