linuxdebug/drivers/net/wireless/ath/wil6210/main.c

2015 lines
52 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
*/
#include <linux/moduleparam.h>
#include <linux/if_arp.h>
#include <linux/etherdevice.h>
#include <linux/rtnetlink.h>
#include "wil6210.h"
#include "txrx.h"
#include "txrx_edma.h"
#include "wmi.h"
#include "boot_loader.h"
#define WAIT_FOR_HALP_VOTE_MS 100
#define WAIT_FOR_SCAN_ABORT_MS 1000
#define WIL_DEFAULT_NUM_RX_STATUS_RINGS 1
#define WIL_BOARD_FILE_MAX_NAMELEN 128
bool debug_fw; /* = false; */
module_param(debug_fw, bool, 0444);
MODULE_PARM_DESC(debug_fw, " do not perform card reset. For FW debug");
static u8 oob_mode;
module_param(oob_mode, byte, 0444);
MODULE_PARM_DESC(oob_mode,
" enable out of the box (OOB) mode in FW, for diagnostics and certification");
bool no_fw_recovery;
module_param(no_fw_recovery, bool, 0644);
MODULE_PARM_DESC(no_fw_recovery, " disable automatic FW error recovery");
/* if not set via modparam, will be set to default value of 1/8 of
* rx ring size during init flow
*/
unsigned short rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_INIT;
module_param(rx_ring_overflow_thrsh, ushort, 0444);
MODULE_PARM_DESC(rx_ring_overflow_thrsh,
" RX ring overflow threshold in descriptors.");
/* We allow allocation of more than 1 page buffers to support large packets.
* It is suboptimal behavior performance wise in case MTU above page size.
*/
unsigned int mtu_max = TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
static int mtu_max_set(const char *val, const struct kernel_param *kp)
{
int ret;
/* sets mtu_max directly. no need to restore it in case of
* illegal value since we assume this will fail insmod
*/
ret = param_set_uint(val, kp);
if (ret)
return ret;
if (mtu_max < 68 || mtu_max > WIL_MAX_ETH_MTU)
ret = -EINVAL;
return ret;
}
static const struct kernel_param_ops mtu_max_ops = {
.set = mtu_max_set,
.get = param_get_uint,
};
module_param_cb(mtu_max, &mtu_max_ops, &mtu_max, 0444);
MODULE_PARM_DESC(mtu_max, " Max MTU value.");
static uint rx_ring_order;
static uint tx_ring_order = WIL_TX_RING_SIZE_ORDER_DEFAULT;
static uint bcast_ring_order = WIL_BCAST_RING_SIZE_ORDER_DEFAULT;
static int ring_order_set(const char *val, const struct kernel_param *kp)
{
int ret;
uint x;
ret = kstrtouint(val, 0, &x);
if (ret)
return ret;
if ((x < WIL_RING_SIZE_ORDER_MIN) || (x > WIL_RING_SIZE_ORDER_MAX))
return -EINVAL;
*((uint *)kp->arg) = x;
return 0;
}
static const struct kernel_param_ops ring_order_ops = {
.set = ring_order_set,
.get = param_get_uint,
};
module_param_cb(rx_ring_order, &ring_order_ops, &rx_ring_order, 0444);
MODULE_PARM_DESC(rx_ring_order, " Rx ring order; size = 1 << order");
module_param_cb(tx_ring_order, &ring_order_ops, &tx_ring_order, 0444);
MODULE_PARM_DESC(tx_ring_order, " Tx ring order; size = 1 << order");
module_param_cb(bcast_ring_order, &ring_order_ops, &bcast_ring_order, 0444);
MODULE_PARM_DESC(bcast_ring_order, " Bcast ring order; size = 1 << order");
enum {
WIL_BOOT_ERR,
WIL_BOOT_VANILLA,
WIL_BOOT_PRODUCTION,
WIL_BOOT_DEVELOPMENT,
};
enum {
WIL_SIG_STATUS_VANILLA = 0x0,
WIL_SIG_STATUS_DEVELOPMENT = 0x1,
WIL_SIG_STATUS_PRODUCTION = 0x2,
WIL_SIG_STATUS_CORRUPTED_PRODUCTION = 0x3,
};
#define RST_DELAY (20) /* msec, for loop in @wil_wait_device_ready */
#define RST_COUNT (1 + 1000/RST_DELAY) /* round up to be above 1 sec total */
#define PMU_READY_DELAY_MS (4) /* ms, for sleep in @wil_wait_device_ready */
#define OTP_HW_DELAY (200) /* usec, loop in @wil_wait_device_ready_talyn_mb */
/* round up to be above 2 ms total */
#define OTP_HW_COUNT (1 + 2000 / OTP_HW_DELAY)
/*
* Due to a hardware issue,
* one has to read/write to/from NIC in 32-bit chunks;
* regular memcpy_fromio and siblings will
* not work on 64-bit platform - it uses 64-bit transactions
*
* Force 32-bit transactions to enable NIC on 64-bit platforms
*
* To avoid byte swap on big endian host, __raw_{read|write}l
* should be used - {read|write}l would swap bytes to provide
* little endian on PCI value in host endianness.
*/
void wil_memcpy_fromio_32(void *dst, const volatile void __iomem *src,
size_t count)
{
u32 *d = dst;
const volatile u32 __iomem *s = src;
for (; count >= 4; count -= 4)
*d++ = __raw_readl(s++);
if (unlikely(count)) {
/* count can be 1..3 */
u32 tmp = __raw_readl(s);
memcpy(d, &tmp, count);
}
}
void wil_memcpy_toio_32(volatile void __iomem *dst, const void *src,
size_t count)
{
volatile u32 __iomem *d = dst;
const u32 *s = src;
for (; count >= 4; count -= 4)
__raw_writel(*s++, d++);
if (unlikely(count)) {
/* count can be 1..3 */
u32 tmp = 0;
memcpy(&tmp, s, count);
__raw_writel(tmp, d);
}
}
/* Device memory access is prohibited while reset or suspend.
* wil_mem_access_lock protects accessing device memory in these cases
*/
int wil_mem_access_lock(struct wil6210_priv *wil)
{
if (!down_read_trylock(&wil->mem_lock))
return -EBUSY;
if (test_bit(wil_status_suspending, wil->status) ||
test_bit(wil_status_suspended, wil->status)) {
up_read(&wil->mem_lock);
return -EBUSY;
}
return 0;
}
void wil_mem_access_unlock(struct wil6210_priv *wil)
{
up_read(&wil->mem_lock);
}
static void wil_ring_fini_tx(struct wil6210_priv *wil, int id)
{
struct wil_ring *ring = &wil->ring_tx[id];
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
lockdep_assert_held(&wil->mutex);
if (!ring->va)
return;
wil_dbg_misc(wil, "vring_fini_tx: id=%d\n", id);
spin_lock_bh(&txdata->lock);
txdata->dot1x_open = false;
txdata->mid = U8_MAX;
txdata->enabled = 0; /* no Tx can be in progress or start anew */
spin_unlock_bh(&txdata->lock);
/* napi_synchronize waits for completion of the current NAPI but will
* not prevent the next NAPI run.
* Add a memory barrier to guarantee that txdata->enabled is zeroed
* before napi_synchronize so that the next scheduled NAPI will not
* handle this vring
*/
wmb();
/* make sure NAPI won't touch this vring */
if (test_bit(wil_status_napi_en, wil->status))
napi_synchronize(&wil->napi_tx);
wil->txrx_ops.ring_fini_tx(wil, ring);
}
static bool wil_vif_is_connected(struct wil6210_priv *wil, u8 mid)
{
int i;
for (i = 0; i < wil->max_assoc_sta; i++) {
if (wil->sta[i].mid == mid &&
wil->sta[i].status == wil_sta_connected)
return true;
}
return false;
}
static void wil_disconnect_cid_complete(struct wil6210_vif *vif, int cid,
u16 reason_code)
__acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
{
uint i;
struct wil6210_priv *wil = vif_to_wil(vif);
struct net_device *ndev = vif_to_ndev(vif);
struct wireless_dev *wdev = vif_to_wdev(vif);
struct wil_sta_info *sta = &wil->sta[cid];
int min_ring_id = wil_get_min_tx_ring_id(wil);
might_sleep();
wil_dbg_misc(wil,
"disconnect_cid_complete: CID %d, MID %d, status %d\n",
cid, sta->mid, sta->status);
/* inform upper layers */
if (sta->status != wil_sta_unused) {
if (vif->mid != sta->mid) {
wil_err(wil, "STA MID mismatch with VIF MID(%d)\n",
vif->mid);
}
switch (wdev->iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
/* AP-like interface */
cfg80211_del_sta(ndev, sta->addr, GFP_KERNEL);
break;
default:
break;
}
sta->status = wil_sta_unused;
sta->mid = U8_MAX;
}
/* reorder buffers */
for (i = 0; i < WIL_STA_TID_NUM; i++) {
struct wil_tid_ampdu_rx *r;
spin_lock_bh(&sta->tid_rx_lock);
r = sta->tid_rx[i];
sta->tid_rx[i] = NULL;
wil_tid_ampdu_rx_free(wil, r);
spin_unlock_bh(&sta->tid_rx_lock);
}
/* crypto context */
memset(sta->tid_crypto_rx, 0, sizeof(sta->tid_crypto_rx));
memset(&sta->group_crypto_rx, 0, sizeof(sta->group_crypto_rx));
/* release vrings */
for (i = min_ring_id; i < ARRAY_SIZE(wil->ring_tx); i++) {
if (wil->ring2cid_tid[i][0] == cid)
wil_ring_fini_tx(wil, i);
}
/* statistics */
memset(&sta->stats, 0, sizeof(sta->stats));
sta->stats.tx_latency_min_us = U32_MAX;
}
static void _wil6210_disconnect_complete(struct wil6210_vif *vif,
const u8 *bssid, u16 reason_code)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int cid = -ENOENT;
struct net_device *ndev;
struct wireless_dev *wdev;
ndev = vif_to_ndev(vif);
wdev = vif_to_wdev(vif);
might_sleep();
wil_info(wil, "disconnect_complete: bssid=%pM, reason=%d\n",
bssid, reason_code);
/* Cases are:
* - disconnect single STA, still connected
* - disconnect single STA, already disconnected
* - disconnect all
*
* For "disconnect all", there are 3 options:
* - bssid == NULL
* - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
* - bssid is our MAC address
*/
if (bssid && !is_broadcast_ether_addr(bssid) &&
!ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
cid = wil_find_cid(wil, vif->mid, bssid);
wil_dbg_misc(wil,
"Disconnect complete %pM, CID=%d, reason=%d\n",
bssid, cid, reason_code);
if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
wil_disconnect_cid_complete(vif, cid, reason_code);
} else { /* all */
wil_dbg_misc(wil, "Disconnect complete all\n");
for (cid = 0; cid < wil->max_assoc_sta; cid++)
wil_disconnect_cid_complete(vif, cid, reason_code);
}
/* link state */
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
wil_bcast_fini(vif);
wil_update_net_queues_bh(wil, vif, NULL, true);
netif_carrier_off(ndev);
if (!wil_has_other_active_ifaces(wil, ndev, false, true))
wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
if (test_and_clear_bit(wil_vif_fwconnected, vif->status)) {
atomic_dec(&wil->connected_vifs);
cfg80211_disconnected(ndev, reason_code,
NULL, 0,
vif->locally_generated_disc,
GFP_KERNEL);
vif->locally_generated_disc = false;
} else if (test_bit(wil_vif_fwconnecting, vif->status)) {
cfg80211_connect_result(ndev, bssid, NULL, 0, NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
vif->bss = NULL;
}
clear_bit(wil_vif_fwconnecting, vif->status);
clear_bit(wil_vif_ft_roam, vif->status);
vif->ptk_rekey_state = WIL_REKEY_IDLE;
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
if (!wil_vif_is_connected(wil, vif->mid)) {
wil_update_net_queues_bh(wil, vif, NULL, true);
if (test_and_clear_bit(wil_vif_fwconnected,
vif->status))
atomic_dec(&wil->connected_vifs);
} else {
wil_update_net_queues_bh(wil, vif, NULL, false);
}
break;
default:
break;
}
}
static int wil_disconnect_cid(struct wil6210_vif *vif, int cid,
u16 reason_code)
{
struct wil6210_priv *wil = vif_to_wil(vif);
struct wireless_dev *wdev = vif_to_wdev(vif);
struct wil_sta_info *sta = &wil->sta[cid];
bool del_sta = false;
might_sleep();
wil_dbg_misc(wil, "disconnect_cid: CID %d, MID %d, status %d\n",
cid, sta->mid, sta->status);
if (sta->status == wil_sta_unused)
return 0;
if (vif->mid != sta->mid) {
wil_err(wil, "STA MID mismatch with VIF MID(%d)\n", vif->mid);
return -EINVAL;
}
/* inform lower layers */
if (wdev->iftype == NL80211_IFTYPE_AP && disable_ap_sme)
del_sta = true;
/* disconnect by sending command disconnect/del_sta and wait
* synchronously for WMI_DISCONNECT_EVENTID event.
*/
return wmi_disconnect_sta(vif, sta->addr, reason_code, del_sta);
}
static void _wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
u16 reason_code)
{
struct wil6210_priv *wil;
struct net_device *ndev;
int cid = -ENOENT;
if (unlikely(!vif))
return;
wil = vif_to_wil(vif);
ndev = vif_to_ndev(vif);
might_sleep();
wil_info(wil, "disconnect bssid=%pM, reason=%d\n", bssid, reason_code);
/* Cases are:
* - disconnect single STA, still connected
* - disconnect single STA, already disconnected
* - disconnect all
*
* For "disconnect all", there are 3 options:
* - bssid == NULL
* - bssid is broadcast address (ff:ff:ff:ff:ff:ff)
* - bssid is our MAC address
*/
if (bssid && !is_broadcast_ether_addr(bssid) &&
!ether_addr_equal_unaligned(ndev->dev_addr, bssid)) {
cid = wil_find_cid(wil, vif->mid, bssid);
wil_dbg_misc(wil, "Disconnect %pM, CID=%d, reason=%d\n",
bssid, cid, reason_code);
if (wil_cid_valid(wil, cid)) /* disconnect 1 peer */
wil_disconnect_cid(vif, cid, reason_code);
} else { /* all */
wil_dbg_misc(wil, "Disconnect all\n");
for (cid = 0; cid < wil->max_assoc_sta; cid++)
wil_disconnect_cid(vif, cid, reason_code);
}
/* call event handler manually after processing wmi_call,
* to avoid deadlock - disconnect event handler acquires
* wil->mutex while it is already held here
*/
_wil6210_disconnect_complete(vif, bssid, reason_code);
}
void wil_disconnect_worker(struct work_struct *work)
{
struct wil6210_vif *vif = container_of(work,
struct wil6210_vif, disconnect_worker);
struct wil6210_priv *wil = vif_to_wil(vif);
struct net_device *ndev = vif_to_ndev(vif);
int rc;
struct {
struct wmi_cmd_hdr wmi;
struct wmi_disconnect_event evt;
} __packed reply;
if (test_bit(wil_vif_fwconnected, vif->status))
/* connect succeeded after all */
return;
if (!test_bit(wil_vif_fwconnecting, vif->status))
/* already disconnected */
return;
memset(&reply, 0, sizeof(reply));
rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0,
WMI_DISCONNECT_EVENTID, &reply, sizeof(reply),
WIL6210_DISCONNECT_TO_MS);
if (rc) {
wil_err(wil, "disconnect error %d\n", rc);
return;
}
wil_update_net_queues_bh(wil, vif, NULL, true);
netif_carrier_off(ndev);
cfg80211_connect_result(ndev, NULL, NULL, 0, NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL);
clear_bit(wil_vif_fwconnecting, vif->status);
}
static int wil_wait_for_recovery(struct wil6210_priv *wil)
{
if (wait_event_interruptible(wil->wq, wil->recovery_state !=
fw_recovery_pending)) {
wil_err(wil, "Interrupt, canceling recovery\n");
return -ERESTARTSYS;
}
if (wil->recovery_state != fw_recovery_running) {
wil_info(wil, "Recovery cancelled\n");
return -EINTR;
}
wil_info(wil, "Proceed with recovery\n");
return 0;
}
void wil_set_recovery_state(struct wil6210_priv *wil, int state)
{
wil_dbg_misc(wil, "set_recovery_state: %d -> %d\n",
wil->recovery_state, state);
wil->recovery_state = state;
wake_up_interruptible(&wil->wq);
}
bool wil_is_recovery_blocked(struct wil6210_priv *wil)
{
return no_fw_recovery && (wil->recovery_state == fw_recovery_pending);
}
static void wil_fw_error_worker(struct work_struct *work)
{
struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
fw_error_worker);
struct net_device *ndev = wil->main_ndev;
struct wireless_dev *wdev;
wil_dbg_misc(wil, "fw error worker\n");
if (!ndev || !(ndev->flags & IFF_UP)) {
wil_info(wil, "No recovery - interface is down\n");
return;
}
wdev = ndev->ieee80211_ptr;
/* increment @recovery_count if less then WIL6210_FW_RECOVERY_TO
* passed since last recovery attempt
*/
if (time_is_after_jiffies(wil->last_fw_recovery +
WIL6210_FW_RECOVERY_TO))
wil->recovery_count++;
else
wil->recovery_count = 1; /* fw was alive for a long time */
if (wil->recovery_count > WIL6210_FW_RECOVERY_RETRIES) {
wil_err(wil, "too many recovery attempts (%d), giving up\n",
wil->recovery_count);
return;
}
wil->last_fw_recovery = jiffies;
wil_info(wil, "fw error recovery requested (try %d)...\n",
wil->recovery_count);
if (!no_fw_recovery)
wil->recovery_state = fw_recovery_running;
if (wil_wait_for_recovery(wil) != 0)
return;
rtnl_lock();
mutex_lock(&wil->mutex);
/* Needs adaptation for multiple VIFs
* need to go over all VIFs and consider the appropriate
* recovery because each one can have different iftype.
*/
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_MONITOR:
/* silent recovery, upper layers will see disconnect */
__wil_down(wil);
__wil_up(wil);
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
if (no_fw_recovery) /* upper layers do recovery */
break;
/* silent recovery, upper layers will see disconnect */
__wil_down(wil);
__wil_up(wil);
mutex_unlock(&wil->mutex);
wil_cfg80211_ap_recovery(wil);
mutex_lock(&wil->mutex);
wil_info(wil, "... completed\n");
break;
default:
wil_err(wil, "No recovery - unknown interface type %d\n",
wdev->iftype);
break;
}
mutex_unlock(&wil->mutex);
rtnl_unlock();
}
static int wil_find_free_ring(struct wil6210_priv *wil)
{
int i;
int min_ring_id = wil_get_min_tx_ring_id(wil);
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
if (!wil->ring_tx[i].va)
return i;
}
return -EINVAL;
}
int wil_ring_init_tx(struct wil6210_vif *vif, int cid)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc = -EINVAL, ringid;
if (cid < 0) {
wil_err(wil, "No connection pending\n");
goto out;
}
ringid = wil_find_free_ring(wil);
if (ringid < 0) {
wil_err(wil, "No free vring found\n");
goto out;
}
wil_dbg_wmi(wil, "Configure for connection CID %d MID %d ring %d\n",
cid, vif->mid, ringid);
rc = wil->txrx_ops.ring_init_tx(vif, ringid, 1 << tx_ring_order,
cid, 0);
if (rc)
wil_err(wil, "init TX for CID %d MID %d vring %d failed\n",
cid, vif->mid, ringid);
out:
return rc;
}
int wil_bcast_init(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int ri = vif->bcast_ring, rc;
if (ri >= 0 && wil->ring_tx[ri].va)
return 0;
ri = wil_find_free_ring(wil);
if (ri < 0)
return ri;
vif->bcast_ring = ri;
rc = wil->txrx_ops.ring_init_bcast(vif, ri, 1 << bcast_ring_order);
if (rc)
vif->bcast_ring = -1;
return rc;
}
void wil_bcast_fini(struct wil6210_vif *vif)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int ri = vif->bcast_ring;
if (ri < 0)
return;
vif->bcast_ring = -1;
wil_ring_fini_tx(wil, ri);
}
void wil_bcast_fini_all(struct wil6210_priv *wil)
{
int i;
struct wil6210_vif *vif;
for (i = 0; i < GET_MAX_VIFS(wil); i++) {
vif = wil->vifs[i];
if (vif)
wil_bcast_fini(vif);
}
}
int wil_priv_init(struct wil6210_priv *wil)
{
uint i;
wil_dbg_misc(wil, "priv_init\n");
memset(wil->sta, 0, sizeof(wil->sta));
for (i = 0; i < WIL6210_MAX_CID; i++) {
spin_lock_init(&wil->sta[i].tid_rx_lock);
wil->sta[i].mid = U8_MAX;
}
for (i = 0; i < WIL6210_MAX_TX_RINGS; i++) {
spin_lock_init(&wil->ring_tx_data[i].lock);
wil->ring2cid_tid[i][0] = WIL6210_MAX_CID;
}
mutex_init(&wil->mutex);
mutex_init(&wil->vif_mutex);
mutex_init(&wil->wmi_mutex);
mutex_init(&wil->halp.lock);
init_completion(&wil->wmi_ready);
init_completion(&wil->wmi_call);
init_completion(&wil->halp.comp);
INIT_WORK(&wil->wmi_event_worker, wmi_event_worker);
INIT_WORK(&wil->fw_error_worker, wil_fw_error_worker);
INIT_LIST_HEAD(&wil->pending_wmi_ev);
spin_lock_init(&wil->wmi_ev_lock);
spin_lock_init(&wil->net_queue_lock);
spin_lock_init(&wil->eap_lock);
init_waitqueue_head(&wil->wq);
init_rwsem(&wil->mem_lock);
wil->wmi_wq = create_singlethread_workqueue(WIL_NAME "_wmi");
if (!wil->wmi_wq)
return -EAGAIN;
wil->wq_service = create_singlethread_workqueue(WIL_NAME "_service");
if (!wil->wq_service)
goto out_wmi_wq;
wil->last_fw_recovery = jiffies;
wil->tx_interframe_timeout = WIL6210_ITR_TX_INTERFRAME_TIMEOUT_DEFAULT;
wil->rx_interframe_timeout = WIL6210_ITR_RX_INTERFRAME_TIMEOUT_DEFAULT;
wil->tx_max_burst_duration = WIL6210_ITR_TX_MAX_BURST_DURATION_DEFAULT;
wil->rx_max_burst_duration = WIL6210_ITR_RX_MAX_BURST_DURATION_DEFAULT;
if (rx_ring_overflow_thrsh == WIL6210_RX_HIGH_TRSH_INIT)
rx_ring_overflow_thrsh = WIL6210_RX_HIGH_TRSH_DEFAULT;
wil->ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT;
wil->wakeup_trigger = WMI_WAKEUP_TRIGGER_UCAST |
WMI_WAKEUP_TRIGGER_BCAST;
memset(&wil->suspend_stats, 0, sizeof(wil->suspend_stats));
wil->ring_idle_trsh = 16;
wil->reply_mid = U8_MAX;
wil->max_vifs = 1;
wil->max_assoc_sta = max_assoc_sta;
/* edma configuration can be updated via debugfs before allocation */
wil->num_rx_status_rings = WIL_DEFAULT_NUM_RX_STATUS_RINGS;
wil->tx_status_ring_order = WIL_TX_SRING_SIZE_ORDER_DEFAULT;
/* Rx status ring size should be bigger than the number of RX buffers
* in order to prevent backpressure on the status ring, which may
* cause HW freeze.
*/
wil->rx_status_ring_order = WIL_RX_SRING_SIZE_ORDER_DEFAULT;
/* Number of RX buffer IDs should be bigger than the RX descriptor
* ring size as in HW reorder flow, the HW can consume additional
* buffers before releasing the previous ones.
*/
wil->rx_buff_id_count = WIL_RX_BUFF_ARR_SIZE_DEFAULT;
wil->amsdu_en = true;
return 0;
out_wmi_wq:
destroy_workqueue(wil->wmi_wq);
return -EAGAIN;
}
void wil6210_bus_request(struct wil6210_priv *wil, u32 kbps)
{
if (wil->platform_ops.bus_request) {
wil->bus_request_kbps = kbps;
wil->platform_ops.bus_request(wil->platform_handle, kbps);
}
}
/**
* wil6210_disconnect - disconnect one connection
* @vif: virtual interface context
* @bssid: peer to disconnect, NULL to disconnect all
* @reason_code: Reason code for the Disassociation frame
*
* Disconnect and release associated resources. Issue WMI
* command(s) to trigger MAC disconnect. When command was issued
* successfully, call the wil6210_disconnect_complete function
* to handle the event synchronously
*/
void wil6210_disconnect(struct wil6210_vif *vif, const u8 *bssid,
u16 reason_code)
{
struct wil6210_priv *wil = vif_to_wil(vif);
wil_dbg_misc(wil, "disconnecting\n");
del_timer_sync(&vif->connect_timer);
_wil6210_disconnect(vif, bssid, reason_code);
}
/**
* wil6210_disconnect_complete - handle disconnect event
* @vif: virtual interface context
* @bssid: peer to disconnect, NULL to disconnect all
* @reason_code: Reason code for the Disassociation frame
*
* Release associated resources and indicate upper layers the
* connection is terminated.
*/
void wil6210_disconnect_complete(struct wil6210_vif *vif, const u8 *bssid,
u16 reason_code)
{
struct wil6210_priv *wil = vif_to_wil(vif);
wil_dbg_misc(wil, "got disconnect\n");
del_timer_sync(&vif->connect_timer);
_wil6210_disconnect_complete(vif, bssid, reason_code);
}
void wil_priv_deinit(struct wil6210_priv *wil)
{
wil_dbg_misc(wil, "priv_deinit\n");
wil_set_recovery_state(wil, fw_recovery_idle);
cancel_work_sync(&wil->fw_error_worker);
wmi_event_flush(wil);
destroy_workqueue(wil->wq_service);
destroy_workqueue(wil->wmi_wq);
kfree(wil->brd_info);
}
static void wil_shutdown_bl(struct wil6210_priv *wil)
{
u32 val;
wil_s(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_shutdown_handshake), BL_SHUTDOWN_HS_GRTD);
usleep_range(100, 150);
val = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_shutdown_handshake));
if (val & BL_SHUTDOWN_HS_RTD) {
wil_dbg_misc(wil, "BL is ready for halt\n");
return;
}
wil_err(wil, "BL did not report ready for halt\n");
}
/* this format is used by ARC embedded CPU for instruction memory */
static inline u32 ARC_me_imm32(u32 d)
{
return ((d & 0xffff0000) >> 16) | ((d & 0x0000ffff) << 16);
}
/* defines access to interrupt vectors for wil_freeze_bl */
#define ARC_IRQ_VECTOR_OFFSET(N) ((N) * 8)
/* ARC long jump instruction */
#define ARC_JAL_INST (0x20200f80)
static void wil_freeze_bl(struct wil6210_priv *wil)
{
u32 jal, upc, saved;
u32 ivt3 = ARC_IRQ_VECTOR_OFFSET(3);
jal = wil_r(wil, wil->iccm_base + ivt3);
if (jal != ARC_me_imm32(ARC_JAL_INST)) {
wil_dbg_misc(wil, "invalid IVT entry found, skipping\n");
return;
}
/* prevent the target from entering deep sleep
* and disabling memory access
*/
saved = wil_r(wil, RGF_USER_USAGE_8);
wil_w(wil, RGF_USER_USAGE_8, saved | BIT_USER_PREVENT_DEEP_SLEEP);
usleep_range(20, 25); /* let the BL process the bit */
/* redirect to endless loop in the INT_L1 context and let it trap */
wil_w(wil, wil->iccm_base + ivt3 + 4, ARC_me_imm32(ivt3));
usleep_range(20, 25); /* let the BL get into the trap */
/* verify the BL is frozen */
upc = wil_r(wil, RGF_USER_CPU_PC);
if (upc < ivt3 || (upc > (ivt3 + 8)))
wil_dbg_misc(wil, "BL freeze failed, PC=0x%08X\n", upc);
wil_w(wil, RGF_USER_USAGE_8, saved);
}
static void wil_bl_prepare_halt(struct wil6210_priv *wil)
{
u32 tmp, ver;
/* before halting device CPU driver must make sure BL is not accessing
* host memory. This is done differently depending on BL version:
* 1. For very old BL versions the procedure is skipped
* (not supported).
* 2. For old BL version we use a special trick to freeze the BL
* 3. For new BL versions we shutdown the BL using handshake procedure.
*/
tmp = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0,
boot_loader_struct_version));
if (!tmp) {
wil_dbg_misc(wil, "old BL, skipping halt preparation\n");
return;
}
tmp = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_shutdown_handshake));
ver = BL_SHUTDOWN_HS_PROT_VER(tmp);
if (ver > 0)
wil_shutdown_bl(wil);
else
wil_freeze_bl(wil);
}
static inline void wil_halt_cpu(struct wil6210_priv *wil)
{
if (wil->hw_version >= HW_VER_TALYN_MB) {
wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB,
BIT_USER_USER_CPU_MAN_RST);
wil_w(wil, RGF_USER_MAC_CPU_0_TALYN_MB,
BIT_USER_MAC_CPU_MAN_RST);
} else {
wil_w(wil, RGF_USER_USER_CPU_0, BIT_USER_USER_CPU_MAN_RST);
wil_w(wil, RGF_USER_MAC_CPU_0, BIT_USER_MAC_CPU_MAN_RST);
}
}
static inline void wil_release_cpu(struct wil6210_priv *wil)
{
/* Start CPU */
if (wil->hw_version >= HW_VER_TALYN_MB)
wil_w(wil, RGF_USER_USER_CPU_0_TALYN_MB, 1);
else
wil_w(wil, RGF_USER_USER_CPU_0, 1);
}
static void wil_set_oob_mode(struct wil6210_priv *wil, u8 mode)
{
wil_info(wil, "oob_mode to %d\n", mode);
switch (mode) {
case 0:
wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE |
BIT_USER_OOB_R2_MODE);
break;
case 1:
wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
break;
case 2:
wil_c(wil, RGF_USER_USAGE_6, BIT_USER_OOB_MODE);
wil_s(wil, RGF_USER_USAGE_6, BIT_USER_OOB_R2_MODE);
break;
default:
wil_err(wil, "invalid oob_mode: %d\n", mode);
}
}
static int wil_wait_device_ready(struct wil6210_priv *wil, int no_flash)
{
int delay = 0;
u32 x, x1 = 0;
/* wait until device ready. */
if (no_flash) {
msleep(PMU_READY_DELAY_MS);
wil_dbg_misc(wil, "Reset completed\n");
} else {
do {
msleep(RST_DELAY);
x = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0,
boot_loader_ready));
if (x1 != x) {
wil_dbg_misc(wil, "BL.ready 0x%08x => 0x%08x\n",
x1, x);
x1 = x;
}
if (delay++ > RST_COUNT) {
wil_err(wil, "Reset not completed, bl.ready 0x%08x\n",
x);
return -ETIME;
}
} while (x != BL_READY);
wil_dbg_misc(wil, "Reset completed in %d ms\n",
delay * RST_DELAY);
}
return 0;
}
static int wil_wait_device_ready_talyn_mb(struct wil6210_priv *wil)
{
u32 otp_hw;
u8 signature_status;
bool otp_signature_err;
bool hw_section_done;
u32 otp_qc_secured;
int delay = 0;
/* Wait for OTP signature test to complete */
usleep_range(2000, 2200);
wil->boot_config = WIL_BOOT_ERR;
/* Poll until OTP signature status is valid.
* In vanilla and development modes, when signature test is complete
* HW sets BIT_OTP_SIGNATURE_ERR_TALYN_MB.
* In production mode BIT_OTP_SIGNATURE_ERR_TALYN_MB remains 0, poll
* for signature status change to 2 or 3.
*/
do {
otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
signature_status = WIL_GET_BITS(otp_hw, 8, 9);
otp_signature_err = otp_hw & BIT_OTP_SIGNATURE_ERR_TALYN_MB;
if (otp_signature_err &&
signature_status == WIL_SIG_STATUS_VANILLA) {
wil->boot_config = WIL_BOOT_VANILLA;
break;
}
if (otp_signature_err &&
signature_status == WIL_SIG_STATUS_DEVELOPMENT) {
wil->boot_config = WIL_BOOT_DEVELOPMENT;
break;
}
if (!otp_signature_err &&
signature_status == WIL_SIG_STATUS_PRODUCTION) {
wil->boot_config = WIL_BOOT_PRODUCTION;
break;
}
if (!otp_signature_err &&
signature_status ==
WIL_SIG_STATUS_CORRUPTED_PRODUCTION) {
/* Unrecognized OTP signature found. Possibly a
* corrupted production signature, access control
* is applied as in production mode, therefore
* do not fail
*/
wil->boot_config = WIL_BOOT_PRODUCTION;
break;
}
if (delay++ > OTP_HW_COUNT)
break;
usleep_range(OTP_HW_DELAY, OTP_HW_DELAY + 10);
} while (!otp_signature_err && signature_status == 0);
if (wil->boot_config == WIL_BOOT_ERR) {
wil_err(wil,
"invalid boot config, signature_status %d otp_signature_err %d\n",
signature_status, otp_signature_err);
return -ETIME;
}
wil_dbg_misc(wil,
"signature test done in %d usec, otp_hw 0x%x, boot_config %d\n",
delay * OTP_HW_DELAY, otp_hw, wil->boot_config);
if (wil->boot_config == WIL_BOOT_VANILLA)
/* Assuming not SPI boot (currently not supported) */
goto out;
hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
delay = 0;
while (!hw_section_done) {
msleep(RST_DELAY);
otp_hw = wil_r(wil, RGF_USER_OTP_HW_RD_MACHINE_1);
hw_section_done = otp_hw & BIT_OTP_HW_SECTION_DONE_TALYN_MB;
if (delay++ > RST_COUNT) {
wil_err(wil, "TO waiting for hw_section_done\n");
return -ETIME;
}
}
wil_dbg_misc(wil, "HW section done in %d ms\n", delay * RST_DELAY);
otp_qc_secured = wil_r(wil, RGF_OTP_QC_SECURED);
wil->secured_boot = otp_qc_secured & BIT_BOOT_FROM_ROM ? 1 : 0;
wil_dbg_misc(wil, "secured boot is %sabled\n",
wil->secured_boot ? "en" : "dis");
out:
wil_dbg_misc(wil, "Reset completed\n");
return 0;
}
static int wil_target_reset(struct wil6210_priv *wil, int no_flash)
{
u32 x;
int rc;
wil_dbg_misc(wil, "Resetting \"%s\"...\n", wil->hw_name);
if (wil->hw_version < HW_VER_TALYN) {
/* Clear MAC link up */
wil_s(wil, RGF_HP_CTRL, BIT(15));
wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0,
BIT_HPAL_PERST_FROM_PAD);
wil_s(wil, RGF_USER_CLKS_CTL_SW_RST_MASK_0, BIT_CAR_PERST_RST);
}
wil_halt_cpu(wil);
if (!no_flash) {
/* clear all boot loader "ready" bits */
wil_w(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0,
boot_loader_ready), 0);
/* this should be safe to write even with old BLs */
wil_w(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_shutdown_handshake), 0);
}
/* Clear Fw Download notification */
wil_c(wil, RGF_USER_USAGE_6, BIT(0));
wil_s(wil, RGF_CAF_OSC_CONTROL, BIT_CAF_OSC_XTAL_EN);
/* XTAL stabilization should take about 3ms */
usleep_range(5000, 7000);
x = wil_r(wil, RGF_CAF_PLL_LOCK_STATUS);
if (!(x & BIT_CAF_OSC_DIG_XTAL_STABLE)) {
wil_err(wil, "Xtal stabilization timeout\n"
"RGF_CAF_PLL_LOCK_STATUS = 0x%08x\n", x);
return -ETIME;
}
/* switch 10k to XTAL*/
wil_c(wil, RGF_USER_SPARROW_M_4, BIT_SPARROW_M_4_SEL_SLEEP_OR_REF);
/* 40 MHz */
wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_CAR_AHB_SW_SEL);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x3ff81f);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0xf);
if (wil->hw_version >= HW_VER_TALYN_MB) {
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x7e000000);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0xc00000f0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
} else {
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0xfe000000);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0x0000003f);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x000000f0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0xffe7fe00);
}
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_0, 0x0);
wil_w(wil, RGF_USER_CLKS_CTL_EXT_SW_RST_VEC_1, 0x0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_1, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_3, 0x00000003);
/* reset A2 PCIE AHB */
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_2, 0x00008000);
wil_w(wil, RGF_USER_CLKS_CTL_SW_RST_VEC_0, 0);
if (wil->hw_version == HW_VER_TALYN_MB)
rc = wil_wait_device_ready_talyn_mb(wil);
else
rc = wil_wait_device_ready(wil, no_flash);
if (rc)
return rc;
wil_c(wil, RGF_USER_CLKS_CTL_0, BIT_USER_CLKS_RST_PWGD);
/* enable fix for HW bug related to the SA/DA swap in AP Rx */
wil_s(wil, RGF_DMA_OFUL_NID_0, BIT_DMA_OFUL_NID_0_RX_EXT_TR_EN |
BIT_DMA_OFUL_NID_0_RX_EXT_A3_SRC);
if (wil->hw_version < HW_VER_TALYN_MB && no_flash) {
/* Reset OTP HW vectors to fit 40MHz */
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME1, 0x60001);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME2, 0x20027);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME3, 0x1);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME4, 0x20027);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME5, 0x30003);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME6, 0x20002);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME7, 0x60001);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME8, 0x60001);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME9, 0x60001);
wil_w(wil, RGF_USER_XPM_IFC_RD_TIME10, 0x60001);
wil_w(wil, RGF_USER_XPM_RD_DOUT_SAMPLE_TIME, 0x57);
}
return 0;
}
static void wil_collect_fw_info(struct wil6210_priv *wil)
{
struct wiphy *wiphy = wil_to_wiphy(wil);
u8 retry_short;
int rc;
wil_refresh_fw_capabilities(wil);
rc = wmi_get_mgmt_retry(wil, &retry_short);
if (!rc) {
wiphy->retry_short = retry_short;
wil_dbg_misc(wil, "FW retry_short: %d\n", retry_short);
}
}
void wil_refresh_fw_capabilities(struct wil6210_priv *wil)
{
struct wiphy *wiphy = wil_to_wiphy(wil);
int features;
wil->keep_radio_on_during_sleep =
test_bit(WIL_PLATFORM_CAPA_RADIO_ON_IN_SUSPEND,
wil->platform_capa) &&
test_bit(WMI_FW_CAPABILITY_D3_SUSPEND, wil->fw_capabilities);
wil_info(wil, "keep_radio_on_during_sleep (%d)\n",
wil->keep_radio_on_during_sleep);
if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
else
wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC;
if (test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) {
wiphy->max_sched_scan_reqs = 1;
wiphy->max_sched_scan_ssids = WMI_MAX_PNO_SSID_NUM;
wiphy->max_match_sets = WMI_MAX_PNO_SSID_NUM;
wiphy->max_sched_scan_ie_len = WMI_MAX_IE_LEN;
wiphy->max_sched_scan_plans = WMI_MAX_PLANS_NUM;
}
if (test_bit(WMI_FW_CAPABILITY_TX_REQ_EXT, wil->fw_capabilities))
wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
if (wil->platform_ops.set_features) {
features = (test_bit(WMI_FW_CAPABILITY_REF_CLOCK_CONTROL,
wil->fw_capabilities) &&
test_bit(WIL_PLATFORM_CAPA_EXT_CLK,
wil->platform_capa)) ?
BIT(WIL_PLATFORM_FEATURE_FW_EXT_CLK_CONTROL) : 0;
if (wil->n_msi == 3)
features |= BIT(WIL_PLATFORM_FEATURE_TRIPLE_MSI);
wil->platform_ops.set_features(wil->platform_handle, features);
}
if (test_bit(WMI_FW_CAPABILITY_BACK_WIN_SIZE_64,
wil->fw_capabilities)) {
wil->max_agg_wsize = WIL_MAX_AGG_WSIZE_64;
wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE_128;
} else {
wil->max_agg_wsize = WIL_MAX_AGG_WSIZE;
wil->max_ampdu_size = WIL_MAX_AMPDU_SIZE;
}
update_supported_bands(wil);
}
void wil_mbox_ring_le2cpus(struct wil6210_mbox_ring *r)
{
le32_to_cpus(&r->base);
le16_to_cpus(&r->entry_size);
le16_to_cpus(&r->size);
le32_to_cpus(&r->tail);
le32_to_cpus(&r->head);
}
/* construct actual board file name to use */
void wil_get_board_file(struct wil6210_priv *wil, char *buf, size_t len)
{
const char *board_file;
const char *wil_talyn_fw_name = ftm_mode ? WIL_FW_NAME_FTM_TALYN :
WIL_FW_NAME_TALYN;
if (wil->board_file) {
board_file = wil->board_file;
} else {
/* If specific FW file is used for Talyn,
* use specific board file
*/
if (strcmp(wil->wil_fw_name, wil_talyn_fw_name) == 0)
board_file = WIL_BRD_NAME_TALYN;
else
board_file = WIL_BOARD_FILE_NAME;
}
strscpy(buf, board_file, len);
}
static int wil_get_bl_info(struct wil6210_priv *wil)
{
struct net_device *ndev = wil->main_ndev;
struct wiphy *wiphy = wil_to_wiphy(wil);
union {
struct bl_dedicated_registers_v0 bl0;
struct bl_dedicated_registers_v1 bl1;
} bl;
u32 bl_ver;
u8 *mac;
u16 rf_status;
wil_memcpy_fromio_32(&bl, wil->csr + HOSTADDR(RGF_USER_BL),
sizeof(bl));
bl_ver = le32_to_cpu(bl.bl0.boot_loader_struct_version);
mac = bl.bl0.mac_address;
if (bl_ver == 0) {
le32_to_cpus(&bl.bl0.rf_type);
le32_to_cpus(&bl.bl0.baseband_type);
rf_status = 0; /* actually, unknown */
wil_info(wil,
"Boot Loader struct v%d: MAC = %pM RF = 0x%08x bband = 0x%08x\n",
bl_ver, mac,
bl.bl0.rf_type, bl.bl0.baseband_type);
wil_info(wil, "Boot Loader build unknown for struct v0\n");
} else {
le16_to_cpus(&bl.bl1.rf_type);
rf_status = le16_to_cpu(bl.bl1.rf_status);
le32_to_cpus(&bl.bl1.baseband_type);
le16_to_cpus(&bl.bl1.bl_version_subminor);
le16_to_cpus(&bl.bl1.bl_version_build);
wil_info(wil,
"Boot Loader struct v%d: MAC = %pM RF = 0x%04x (status 0x%04x) bband = 0x%08x\n",
bl_ver, mac,
bl.bl1.rf_type, rf_status,
bl.bl1.baseband_type);
wil_info(wil, "Boot Loader build %d.%d.%d.%d\n",
bl.bl1.bl_version_major, bl.bl1.bl_version_minor,
bl.bl1.bl_version_subminor, bl.bl1.bl_version_build);
}
if (!is_valid_ether_addr(mac)) {
wil_err(wil, "BL: Invalid MAC %pM\n", mac);
return -EINVAL;
}
ether_addr_copy(ndev->perm_addr, mac);
ether_addr_copy(wiphy->perm_addr, mac);
if (!is_valid_ether_addr(ndev->dev_addr))
eth_hw_addr_set(ndev, mac);
if (rf_status) {/* bad RF cable? */
wil_err(wil, "RF communication error 0x%04x",
rf_status);
return -EAGAIN;
}
return 0;
}
static void wil_bl_crash_info(struct wil6210_priv *wil, bool is_err)
{
u32 bl_assert_code, bl_assert_blink, bl_magic_number;
u32 bl_ver = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v0,
boot_loader_struct_version));
if (bl_ver < 2)
return;
bl_assert_code = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_assert_code));
bl_assert_blink = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_assert_blink));
bl_magic_number = wil_r(wil, RGF_USER_BL +
offsetof(struct bl_dedicated_registers_v1,
bl_magic_number));
if (is_err) {
wil_err(wil,
"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
bl_assert_code, bl_assert_blink, bl_magic_number);
} else {
wil_dbg_misc(wil,
"BL assert code 0x%08x blink 0x%08x magic 0x%08x\n",
bl_assert_code, bl_assert_blink, bl_magic_number);
}
}
static int wil_get_otp_info(struct wil6210_priv *wil)
{
struct net_device *ndev = wil->main_ndev;
struct wiphy *wiphy = wil_to_wiphy(wil);
u8 mac[8];
int mac_addr;
/* OEM MAC has precedence */
mac_addr = RGF_OTP_OEM_MAC;
wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr), sizeof(mac));
if (is_valid_ether_addr(mac)) {
wil_info(wil, "using OEM MAC %pM\n", mac);
} else {
if (wil->hw_version >= HW_VER_TALYN_MB)
mac_addr = RGF_OTP_MAC_TALYN_MB;
else
mac_addr = RGF_OTP_MAC;
wil_memcpy_fromio_32(mac, wil->csr + HOSTADDR(mac_addr),
sizeof(mac));
}
if (!is_valid_ether_addr(mac)) {
wil_err(wil, "Invalid MAC %pM\n", mac);
return -EINVAL;
}
ether_addr_copy(ndev->perm_addr, mac);
ether_addr_copy(wiphy->perm_addr, mac);
if (!is_valid_ether_addr(ndev->dev_addr))
eth_hw_addr_set(ndev, mac);
return 0;
}
static int wil_wait_for_fw_ready(struct wil6210_priv *wil)
{
ulong to = msecs_to_jiffies(2000);
ulong left = wait_for_completion_timeout(&wil->wmi_ready, to);
if (0 == left) {
wil_err(wil, "Firmware not ready\n");
return -ETIME;
} else {
wil_info(wil, "FW ready after %d ms. HW version 0x%08x\n",
jiffies_to_msecs(to-left), wil->hw_version);
}
return 0;
}
void wil_abort_scan(struct wil6210_vif *vif, bool sync)
{
struct wil6210_priv *wil = vif_to_wil(vif);
int rc;
struct cfg80211_scan_info info = {
.aborted = true,
};
lockdep_assert_held(&wil->vif_mutex);
if (!vif->scan_request)
return;
wil_dbg_misc(wil, "Abort scan_request 0x%p\n", vif->scan_request);
del_timer_sync(&vif->scan_timer);
mutex_unlock(&wil->vif_mutex);
rc = wmi_abort_scan(vif);
if (!rc && sync)
wait_event_interruptible_timeout(wil->wq, !vif->scan_request,
msecs_to_jiffies(
WAIT_FOR_SCAN_ABORT_MS));
mutex_lock(&wil->vif_mutex);
if (vif->scan_request) {
cfg80211_scan_done(vif->scan_request, &info);
vif->scan_request = NULL;
}
}
void wil_abort_scan_all_vifs(struct wil6210_priv *wil, bool sync)
{
int i;
lockdep_assert_held(&wil->vif_mutex);
for (i = 0; i < GET_MAX_VIFS(wil); i++) {
struct wil6210_vif *vif = wil->vifs[i];
if (vif)
wil_abort_scan(vif, sync);
}
}
int wil_ps_update(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile)
{
int rc;
if (!test_bit(WMI_FW_CAPABILITY_PS_CONFIG, wil->fw_capabilities)) {
wil_err(wil, "set_power_mgmt not supported\n");
return -EOPNOTSUPP;
}
rc = wmi_ps_dev_profile_cfg(wil, ps_profile);
if (rc)
wil_err(wil, "wmi_ps_dev_profile_cfg failed (%d)\n", rc);
else
wil->ps_profile = ps_profile;
return rc;
}
static void wil_pre_fw_config(struct wil6210_priv *wil)
{
wil_clear_fw_log_addr(wil);
/* Mark FW as loaded from host */
wil_s(wil, RGF_USER_USAGE_6, 1);
/* clear any interrupts which on-card-firmware
* may have set
*/
wil6210_clear_irq(wil);
/* CAF_ICR - clear and mask */
/* it is W1C, clear by writing back same value */
if (wil->hw_version < HW_VER_TALYN_MB) {
wil_s(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, ICR), 0);
wil_w(wil, RGF_CAF_ICR + offsetof(struct RGF_ICR, IMV), ~0);
}
/* clear PAL_UNIT_ICR (potential D0->D3 leftover)
* In Talyn-MB host cannot access this register due to
* access control, hence PAL_UNIT_ICR is cleared by the FW
*/
if (wil->hw_version < HW_VER_TALYN_MB)
wil_s(wil, RGF_PAL_UNIT_ICR + offsetof(struct RGF_ICR, ICR),
0);
if (wil->fw_calib_result > 0) {
__le32 val = cpu_to_le32(wil->fw_calib_result |
(CALIB_RESULT_SIGNATURE << 8));
wil_w(wil, RGF_USER_FW_CALIB_RESULT, (u32 __force)val);
}
}
static int wil_restore_vifs(struct wil6210_priv *wil)
{
struct wil6210_vif *vif;
struct net_device *ndev;
struct wireless_dev *wdev;
int i, rc;
for (i = 0; i < GET_MAX_VIFS(wil); i++) {
vif = wil->vifs[i];
if (!vif)
continue;
vif->ap_isolate = 0;
if (vif->mid) {
ndev = vif_to_ndev(vif);
wdev = vif_to_wdev(vif);
rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr,
wdev->iftype);
if (rc) {
wil_err(wil, "fail to restore VIF %d type %d, rc %d\n",
i, wdev->iftype, rc);
return rc;
}
}
}
return 0;
}
/*
* Clear FW and ucode log start addr to indicate FW log is not ready. The host
* driver clears the addresses before FW starts and FW initializes the address
* when it is ready to send logs.
*/
void wil_clear_fw_log_addr(struct wil6210_priv *wil)
{
/* FW log addr */
wil_w(wil, RGF_USER_USAGE_1, 0);
/* ucode log addr */
wil_w(wil, RGF_USER_USAGE_2, 0);
wil_dbg_misc(wil, "Cleared FW and ucode log address");
}
/*
* We reset all the structures, and we reset the UMAC.
* After calling this routine, you're expected to reload
* the firmware.
*/
int wil_reset(struct wil6210_priv *wil, bool load_fw)
{
int rc, i;
unsigned long status_flags = BIT(wil_status_resetting);
int no_flash;
struct wil6210_vif *vif;
wil_dbg_misc(wil, "reset\n");
WARN_ON(!mutex_is_locked(&wil->mutex));
WARN_ON(test_bit(wil_status_napi_en, wil->status));
if (debug_fw) {
static const u8 mac[ETH_ALEN] = {
0x00, 0xde, 0xad, 0x12, 0x34, 0x56,
};
struct net_device *ndev = wil->main_ndev;
ether_addr_copy(ndev->perm_addr, mac);
eth_hw_addr_set(ndev, ndev->perm_addr);
return 0;
}
if (wil->hw_version == HW_VER_UNKNOWN)
return -ENODEV;
if (test_bit(WIL_PLATFORM_CAPA_T_PWR_ON_0, wil->platform_capa) &&
wil->hw_version < HW_VER_TALYN_MB) {
wil_dbg_misc(wil, "Notify FW to set T_POWER_ON=0\n");
wil_s(wil, RGF_USER_USAGE_8, BIT_USER_SUPPORT_T_POWER_ON_0);
}
if (test_bit(WIL_PLATFORM_CAPA_EXT_CLK, wil->platform_capa)) {
wil_dbg_misc(wil, "Notify FW on ext clock configuration\n");
wil_s(wil, RGF_USER_USAGE_8, BIT_USER_EXT_CLK);
}
if (wil->platform_ops.notify) {
rc = wil->platform_ops.notify(wil->platform_handle,
WIL_PLATFORM_EVT_PRE_RESET);
if (rc)
wil_err(wil, "PRE_RESET platform notify failed, rc %d\n",
rc);
}
set_bit(wil_status_resetting, wil->status);
mutex_lock(&wil->vif_mutex);
wil_abort_scan_all_vifs(wil, false);
mutex_unlock(&wil->vif_mutex);
for (i = 0; i < GET_MAX_VIFS(wil); i++) {
vif = wil->vifs[i];
if (vif) {
cancel_work_sync(&vif->disconnect_worker);
wil6210_disconnect(vif, NULL,
WLAN_REASON_DEAUTH_LEAVING);
vif->ptk_rekey_state = WIL_REKEY_IDLE;
}
}
wil_bcast_fini_all(wil);
/* Disable device led before reset*/
wmi_led_cfg(wil, false);
down_write(&wil->mem_lock);
/* prevent NAPI from being scheduled and prevent wmi commands */
mutex_lock(&wil->wmi_mutex);
if (test_bit(wil_status_suspending, wil->status))
status_flags |= BIT(wil_status_suspending);
bitmap_and(wil->status, wil->status, &status_flags,
wil_status_last);
wil_dbg_misc(wil, "wil->status (0x%lx)\n", *wil->status);
mutex_unlock(&wil->wmi_mutex);
wil_mask_irq(wil);
wmi_event_flush(wil);
flush_workqueue(wil->wq_service);
flush_workqueue(wil->wmi_wq);
no_flash = test_bit(hw_capa_no_flash, wil->hw_capa);
if (!no_flash)
wil_bl_crash_info(wil, false);
wil_disable_irq(wil);
rc = wil_target_reset(wil, no_flash);
wil6210_clear_irq(wil);
wil_enable_irq(wil);
wil->txrx_ops.rx_fini(wil);
wil->txrx_ops.tx_fini(wil);
if (rc) {
if (!no_flash)
wil_bl_crash_info(wil, true);
goto out;
}
if (no_flash) {
rc = wil_get_otp_info(wil);
} else {
rc = wil_get_bl_info(wil);
if (rc == -EAGAIN && !load_fw)
/* ignore RF error if not going up */
rc = 0;
}
if (rc)
goto out;
wil_set_oob_mode(wil, oob_mode);
if (load_fw) {
char board_file[WIL_BOARD_FILE_MAX_NAMELEN];
if (wil->secured_boot) {
wil_err(wil, "secured boot is not supported\n");
up_write(&wil->mem_lock);
return -ENOTSUPP;
}
board_file[0] = '\0';
wil_get_board_file(wil, board_file, sizeof(board_file));
wil_info(wil, "Use firmware <%s> + board <%s>\n",
wil->wil_fw_name, board_file);
if (!no_flash)
wil_bl_prepare_halt(wil);
wil_halt_cpu(wil);
memset(wil->fw_version, 0, sizeof(wil->fw_version));
/* Loading f/w from the file */
rc = wil_request_firmware(wil, wil->wil_fw_name, true);
if (rc)
goto out;
if (wil->num_of_brd_entries)
rc = wil_request_board(wil, board_file);
else
rc = wil_request_firmware(wil, board_file, true);
if (rc)
goto out;
wil_pre_fw_config(wil);
wil_release_cpu(wil);
}
/* init after reset */
reinit_completion(&wil->wmi_ready);
reinit_completion(&wil->wmi_call);
reinit_completion(&wil->halp.comp);
clear_bit(wil_status_resetting, wil->status);
up_write(&wil->mem_lock);
if (load_fw) {
wil_unmask_irq(wil);
/* we just started MAC, wait for FW ready */
rc = wil_wait_for_fw_ready(wil);
if (rc)
return rc;
/* check FW is responsive */
rc = wmi_echo(wil);
if (rc) {
wil_err(wil, "wmi_echo failed, rc %d\n", rc);
return rc;
}
wil->txrx_ops.configure_interrupt_moderation(wil);
/* Enable OFU rdy valid bug fix, to prevent hang in oful34_rx
* while there is back-pressure from Host during RX
*/
if (wil->hw_version >= HW_VER_TALYN_MB)
wil_s(wil, RGF_DMA_MISC_CTL,
BIT_OFUL34_RDY_VALID_BUG_FIX_EN);
rc = wil_restore_vifs(wil);
if (rc) {
wil_err(wil, "failed to restore vifs, rc %d\n", rc);
return rc;
}
wil_collect_fw_info(wil);
if (wil->ps_profile != WMI_PS_PROFILE_TYPE_DEFAULT)
wil_ps_update(wil, wil->ps_profile);
if (wil->platform_ops.notify) {
rc = wil->platform_ops.notify(wil->platform_handle,
WIL_PLATFORM_EVT_FW_RDY);
if (rc) {
wil_err(wil, "FW_RDY notify failed, rc %d\n",
rc);
rc = 0;
}
}
}
return rc;
out:
up_write(&wil->mem_lock);
clear_bit(wil_status_resetting, wil->status);
return rc;
}
void wil_fw_error_recovery(struct wil6210_priv *wil)
{
wil_dbg_misc(wil, "starting fw error recovery\n");
if (test_bit(wil_status_resetting, wil->status)) {
wil_info(wil, "Reset already in progress\n");
return;
}
wil->recovery_state = fw_recovery_pending;
schedule_work(&wil->fw_error_worker);
}
int __wil_up(struct wil6210_priv *wil)
{
struct net_device *ndev = wil->main_ndev;
struct wireless_dev *wdev = ndev->ieee80211_ptr;
int rc;
WARN_ON(!mutex_is_locked(&wil->mutex));
rc = wil_reset(wil, true);
if (rc)
return rc;
/* Rx RING. After MAC and beacon */
if (rx_ring_order == 0)
rx_ring_order = wil->hw_version < HW_VER_TALYN_MB ?
WIL_RX_RING_SIZE_ORDER_DEFAULT :
WIL_RX_RING_SIZE_ORDER_TALYN_DEFAULT;
rc = wil->txrx_ops.rx_init(wil, rx_ring_order);
if (rc)
return rc;
rc = wil->txrx_ops.tx_init(wil);
if (rc)
return rc;
switch (wdev->iftype) {
case NL80211_IFTYPE_STATION:
wil_dbg_misc(wil, "type: STATION\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_AP:
wil_dbg_misc(wil, "type: AP\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_P2P_CLIENT:
wil_dbg_misc(wil, "type: P2P_CLIENT\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_P2P_GO:
wil_dbg_misc(wil, "type: P2P_GO\n");
ndev->type = ARPHRD_ETHER;
break;
case NL80211_IFTYPE_MONITOR:
wil_dbg_misc(wil, "type: Monitor\n");
ndev->type = ARPHRD_IEEE80211_RADIOTAP;
/* ARPHRD_IEEE80211 or ARPHRD_IEEE80211_RADIOTAP ? */
break;
default:
return -EOPNOTSUPP;
}
/* MAC address - pre-requisite for other commands */
wmi_set_mac_address(wil, ndev->dev_addr);
wil_dbg_misc(wil, "NAPI enable\n");
napi_enable(&wil->napi_rx);
napi_enable(&wil->napi_tx);
set_bit(wil_status_napi_en, wil->status);
wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
return 0;
}
int wil_up(struct wil6210_priv *wil)
{
int rc;
wil_dbg_misc(wil, "up\n");
mutex_lock(&wil->mutex);
rc = __wil_up(wil);
mutex_unlock(&wil->mutex);
return rc;
}
int __wil_down(struct wil6210_priv *wil)
{
int rc;
WARN_ON(!mutex_is_locked(&wil->mutex));
set_bit(wil_status_resetting, wil->status);
wil6210_bus_request(wil, 0);
wil_disable_irq(wil);
if (test_and_clear_bit(wil_status_napi_en, wil->status)) {
napi_disable(&wil->napi_rx);
napi_disable(&wil->napi_tx);
wil_dbg_misc(wil, "NAPI disable\n");
}
wil_enable_irq(wil);
mutex_lock(&wil->vif_mutex);
wil_p2p_stop_radio_operations(wil);
wil_abort_scan_all_vifs(wil, false);
mutex_unlock(&wil->vif_mutex);
rc = wil_reset(wil, false);
return rc;
}
int wil_down(struct wil6210_priv *wil)
{
int rc;
wil_dbg_misc(wil, "down\n");
wil_set_recovery_state(wil, fw_recovery_idle);
mutex_lock(&wil->mutex);
rc = __wil_down(wil);
mutex_unlock(&wil->mutex);
return rc;
}
int wil_find_cid(struct wil6210_priv *wil, u8 mid, const u8 *mac)
{
int i;
int rc = -ENOENT;
for (i = 0; i < wil->max_assoc_sta; i++) {
if (wil->sta[i].mid == mid &&
wil->sta[i].status != wil_sta_unused &&
ether_addr_equal(wil->sta[i].addr, mac)) {
rc = i;
break;
}
}
return rc;
}
void wil_halp_vote(struct wil6210_priv *wil)
{
unsigned long rc;
unsigned long to_jiffies = msecs_to_jiffies(WAIT_FOR_HALP_VOTE_MS);
if (wil->hw_version >= HW_VER_TALYN_MB)
return;
mutex_lock(&wil->halp.lock);
wil_dbg_irq(wil, "halp_vote: start, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
if (++wil->halp.ref_cnt == 1) {
reinit_completion(&wil->halp.comp);
/* mark to IRQ context to handle HALP ICR */
wil->halp.handle_icr = true;
wil6210_set_halp(wil);
rc = wait_for_completion_timeout(&wil->halp.comp, to_jiffies);
if (!rc) {
wil_err(wil, "HALP vote timed out\n");
/* Mask HALP as done in case the interrupt is raised */
wil->halp.handle_icr = false;
wil6210_mask_halp(wil);
} else {
wil_dbg_irq(wil,
"halp_vote: HALP vote completed after %d ms\n",
jiffies_to_msecs(to_jiffies - rc));
}
}
wil_dbg_irq(wil, "halp_vote: end, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
mutex_unlock(&wil->halp.lock);
}
void wil_halp_unvote(struct wil6210_priv *wil)
{
if (wil->hw_version >= HW_VER_TALYN_MB)
return;
WARN_ON(wil->halp.ref_cnt == 0);
mutex_lock(&wil->halp.lock);
wil_dbg_irq(wil, "halp_unvote: start, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
if (--wil->halp.ref_cnt == 0) {
wil6210_clear_halp(wil);
wil_dbg_irq(wil, "HALP unvote\n");
}
wil_dbg_irq(wil, "halp_unvote:end, HALP ref_cnt (%d)\n",
wil->halp.ref_cnt);
mutex_unlock(&wil->halp.lock);
}
void wil_init_txrx_ops(struct wil6210_priv *wil)
{
if (wil->use_enhanced_dma_hw)
wil_init_txrx_ops_edma(wil);
else
wil_init_txrx_ops_legacy_dma(wil);
}