linuxdebug/drivers/nvme/host/hwmon.c

282 lines
6.3 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* NVM Express hardware monitoring support
* Copyright (c) 2019, Guenter Roeck
*/
#include <linux/hwmon.h>
#include <linux/units.h>
#include <asm/unaligned.h>
#include "nvme.h"
struct nvme_hwmon_data {
struct nvme_ctrl *ctrl;
struct nvme_smart_log *log;
struct mutex read_lock;
};
static int nvme_get_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under,
long *temp)
{
unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT;
u32 status;
int ret;
if (under)
threshold |= NVME_TEMP_THRESH_TYPE_UNDER;
ret = nvme_get_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0,
&status);
if (ret > 0)
return -EIO;
if (ret < 0)
return ret;
*temp = kelvin_to_millicelsius(status & NVME_TEMP_THRESH_MASK);
return 0;
}
static int nvme_set_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under,
long temp)
{
unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT;
int ret;
temp = millicelsius_to_kelvin(temp);
threshold |= clamp_val(temp, 0, NVME_TEMP_THRESH_MASK);
if (under)
threshold |= NVME_TEMP_THRESH_TYPE_UNDER;
ret = nvme_set_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0,
NULL);
if (ret > 0)
return -EIO;
return ret;
}
static int nvme_hwmon_get_smart_log(struct nvme_hwmon_data *data)
{
return nvme_get_log(data->ctrl, NVME_NSID_ALL, NVME_LOG_SMART, 0,
NVME_CSI_NVM, data->log, sizeof(*data->log), 0);
}
static int nvme_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct nvme_hwmon_data *data = dev_get_drvdata(dev);
struct nvme_smart_log *log = data->log;
int temp;
int err;
/*
* First handle attributes which don't require us to read
* the smart log.
*/
switch (attr) {
case hwmon_temp_max:
return nvme_get_temp_thresh(data->ctrl, channel, false, val);
case hwmon_temp_min:
return nvme_get_temp_thresh(data->ctrl, channel, true, val);
case hwmon_temp_crit:
*val = kelvin_to_millicelsius(data->ctrl->cctemp);
return 0;
default:
break;
}
mutex_lock(&data->read_lock);
err = nvme_hwmon_get_smart_log(data);
if (err)
goto unlock;
switch (attr) {
case hwmon_temp_input:
if (!channel)
temp = get_unaligned_le16(log->temperature);
else
temp = le16_to_cpu(log->temp_sensor[channel - 1]);
*val = kelvin_to_millicelsius(temp);
break;
case hwmon_temp_alarm:
*val = !!(log->critical_warning & NVME_SMART_CRIT_TEMPERATURE);
break;
default:
err = -EOPNOTSUPP;
break;
}
unlock:
mutex_unlock(&data->read_lock);
return err;
}
static int nvme_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct nvme_hwmon_data *data = dev_get_drvdata(dev);
switch (attr) {
case hwmon_temp_max:
return nvme_set_temp_thresh(data->ctrl, channel, false, val);
case hwmon_temp_min:
return nvme_set_temp_thresh(data->ctrl, channel, true, val);
default:
break;
}
return -EOPNOTSUPP;
}
static const char * const nvme_hwmon_sensor_names[] = {
"Composite",
"Sensor 1",
"Sensor 2",
"Sensor 3",
"Sensor 4",
"Sensor 5",
"Sensor 6",
"Sensor 7",
"Sensor 8",
};
static int nvme_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
*str = nvme_hwmon_sensor_names[channel];
return 0;
}
static umode_t nvme_hwmon_is_visible(const void *_data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct nvme_hwmon_data *data = _data;
switch (attr) {
case hwmon_temp_crit:
if (!channel && data->ctrl->cctemp)
return 0444;
break;
case hwmon_temp_max:
case hwmon_temp_min:
if ((!channel && data->ctrl->wctemp) ||
(channel && data->log->temp_sensor[channel - 1] &&
!(data->ctrl->quirks &
NVME_QUIRK_NO_SECONDARY_TEMP_THRESH))) {
if (data->ctrl->quirks &
NVME_QUIRK_NO_TEMP_THRESH_CHANGE)
return 0444;
return 0644;
}
break;
case hwmon_temp_alarm:
if (!channel)
return 0444;
break;
case hwmon_temp_input:
case hwmon_temp_label:
if (!channel || data->log->temp_sensor[channel - 1])
return 0444;
break;
default:
break;
}
return 0;
}
static const struct hwmon_channel_info *nvme_hwmon_info[] = {
HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_CRIT | HWMON_T_LABEL | HWMON_T_ALARM,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN |
HWMON_T_LABEL),
NULL
};
static const struct hwmon_ops nvme_hwmon_ops = {
.is_visible = nvme_hwmon_is_visible,
.read = nvme_hwmon_read,
.read_string = nvme_hwmon_read_string,
.write = nvme_hwmon_write,
};
static const struct hwmon_chip_info nvme_hwmon_chip_info = {
.ops = &nvme_hwmon_ops,
.info = nvme_hwmon_info,
};
int nvme_hwmon_init(struct nvme_ctrl *ctrl)
{
struct device *dev = ctrl->device;
struct nvme_hwmon_data *data;
struct device *hwmon;
int err;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->log = kzalloc(sizeof(*data->log), GFP_KERNEL);
if (!data->log) {
err = -ENOMEM;
goto err_free_data;
}
data->ctrl = ctrl;
mutex_init(&data->read_lock);
err = nvme_hwmon_get_smart_log(data);
if (err) {
dev_warn(dev, "Failed to read smart log (error %d)\n", err);
goto err_free_log;
}
hwmon = hwmon_device_register_with_info(dev, "nvme",
data, &nvme_hwmon_chip_info,
NULL);
if (IS_ERR(hwmon)) {
dev_warn(dev, "Failed to instantiate hwmon device\n");
err = PTR_ERR(hwmon);
goto err_free_log;
}
ctrl->hwmon_device = hwmon;
return 0;
err_free_log:
kfree(data->log);
err_free_data:
kfree(data);
return err;
}
void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
{
if (ctrl->hwmon_device) {
struct nvme_hwmon_data *data =
dev_get_drvdata(ctrl->hwmon_device);
hwmon_device_unregister(ctrl->hwmon_device);
ctrl->hwmon_device = NULL;
kfree(data->log);
kfree(data);
}
}