linuxdebug/drivers/usb/host/xhci-mtk.h

180 lines
5.4 KiB
C
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2015 MediaTek Inc.
* Author:
* Zhigang.Wei <zhigang.wei@mediatek.com>
* Chunfeng.Yun <chunfeng.yun@mediatek.com>
*/
#ifndef _XHCI_MTK_H_
#define _XHCI_MTK_H_
#include <linux/clk.h>
#include <linux/hashtable.h>
#include <linux/regulator/consumer.h>
#include "xhci.h"
#define BULK_CLKS_NUM 5
#define BULK_VREGS_NUM 2
/* support at most 64 ep, use 32 size hash table */
#define SCH_EP_HASH_BITS 5
/**
* To simplify scheduler algorithm, set a upper limit for ESIT,
* if a synchromous ep's ESIT is larger than @XHCI_MTK_MAX_ESIT,
* round down to the limit value, that means allocating more
* bandwidth to it.
*/
#define XHCI_MTK_MAX_ESIT (1 << 6)
#define XHCI_MTK_BW_INDEX(x) ((x) & (XHCI_MTK_MAX_ESIT - 1))
/**
* @fs_bus_bw: array to keep track of bandwidth already used for FS
* @ep_list: Endpoints using this TT
*/
struct mu3h_sch_tt {
u32 fs_bus_bw[XHCI_MTK_MAX_ESIT];
struct list_head ep_list;
};
/**
* struct mu3h_sch_bw_info: schedule information for bandwidth domain
*
* @bus_bw: array to keep track of bandwidth already used at each uframes
*
* treat a HS root port as a bandwidth domain, but treat a SS root port as
* two bandwidth domains, one for IN eps and another for OUT eps.
*/
struct mu3h_sch_bw_info {
u32 bus_bw[XHCI_MTK_MAX_ESIT];
};
/**
* struct mu3h_sch_ep_info: schedule information for endpoint
*
* @esit: unit is 125us, equal to 2 << Interval field in ep-context
* @num_esit: number of @esit in a period
* @num_budget_microframes: number of continuous uframes
* (@repeat==1) scheduled within the interval
* @bw_cost_per_microframe: bandwidth cost per microframe
* @hentry: hash table entry
* @endpoint: linked into bandwidth domain which it belongs to
* @tt_endpoint: linked into mu3h_sch_tt's list which it belongs to
* @bw_info: bandwidth domain which this endpoint belongs
* @sch_tt: mu3h_sch_tt linked into
* @ep_type: endpoint type
* @maxpkt: max packet size of endpoint
* @ep: address of usb_host_endpoint struct
* @allocated: the bandwidth is aready allocated from bus_bw
* @offset: which uframe of the interval that transfer should be
* scheduled first time within the interval
* @repeat: the time gap between two uframes that transfers are
* scheduled within a interval. in the simple algorithm, only
* assign 0 or 1 to it; 0 means using only one uframe in a
* interval, and 1 means using @num_budget_microframes
* continuous uframes
* @pkts: number of packets to be transferred in the scheduled uframes
* @cs_count: number of CS that host will trigger
* @burst_mode: burst mode for scheduling. 0: normal burst mode,
* distribute the bMaxBurst+1 packets for a single burst
* according to @pkts and @repeat, repeate the burst multiple
* times; 1: distribute the (bMaxBurst+1)*(Mult+1) packets
* according to @pkts and @repeat. normal mode is used by
* default
*/
struct mu3h_sch_ep_info {
u32 esit;
u32 num_esit;
u32 num_budget_microframes;
u32 bw_cost_per_microframe;
struct list_head endpoint;
struct hlist_node hentry;
struct list_head tt_endpoint;
struct mu3h_sch_bw_info *bw_info;
struct mu3h_sch_tt *sch_tt;
u32 ep_type;
u32 maxpkt;
struct usb_host_endpoint *ep;
enum usb_device_speed speed;
bool allocated;
/*
* mtk xHCI scheduling information put into reserved DWs
* in ep context
*/
u32 offset;
u32 repeat;
u32 pkts;
u32 cs_count;
u32 burst_mode;
};
#define MU3C_U3_PORT_MAX 4
#define MU3C_U2_PORT_MAX 5
/**
* struct mu3c_ippc_regs: MTK ssusb ip port control registers
* @ip_pw_ctr0~3: ip power and clock control registers
* @ip_pw_sts1~2: ip power and clock status registers
* @ip_xhci_cap: ip xHCI capability register
* @u3_ctrl_p[x]: ip usb3 port x control register, only low 4bytes are used
* @u2_ctrl_p[x]: ip usb2 port x control register, only low 4bytes are used
* @u2_phy_pll: usb2 phy pll control register
*/
struct mu3c_ippc_regs {
__le32 ip_pw_ctr0;
__le32 ip_pw_ctr1;
__le32 ip_pw_ctr2;
__le32 ip_pw_ctr3;
__le32 ip_pw_sts1;
__le32 ip_pw_sts2;
__le32 reserved0[3];
__le32 ip_xhci_cap;
__le32 reserved1[2];
__le64 u3_ctrl_p[MU3C_U3_PORT_MAX];
__le64 u2_ctrl_p[MU3C_U2_PORT_MAX];
__le32 reserved2;
__le32 u2_phy_pll;
__le32 reserved3[33]; /* 0x80 ~ 0xff */
};
struct xhci_hcd_mtk {
struct device *dev;
struct usb_hcd *hcd;
struct mu3h_sch_bw_info *sch_array;
struct list_head bw_ep_chk_list;
DECLARE_HASHTABLE(sch_ep_hash, SCH_EP_HASH_BITS);
struct mu3c_ippc_regs __iomem *ippc_regs;
int num_u2_ports;
int num_u3_ports;
int u2p_dis_msk;
int u3p_dis_msk;
struct clk_bulk_data clks[BULK_CLKS_NUM];
struct regulator_bulk_data supplies[BULK_VREGS_NUM];
unsigned int has_ippc:1;
unsigned int lpm_support:1;
unsigned int u2_lpm_disable:1;
/* usb remote wakeup */
unsigned int uwk_en:1;
struct regmap *uwk;
u32 uwk_reg_base;
u32 uwk_vers;
};
static inline struct xhci_hcd_mtk *hcd_to_mtk(struct usb_hcd *hcd)
{
return dev_get_drvdata(hcd->self.controller);
}
int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk);
void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk);
int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep);
int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep);
int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
#endif /* _XHCI_MTK_H_ */