linuxdebug/rust/alloc/vec/mod.rs

3141 lines
105 KiB
Rust
Raw Permalink Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! A contiguous growable array type with heap-allocated contents, written
//! `Vec<T>`.
//!
//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
//! *O*(1) pop (from the end).
//!
//! Vectors ensure they never allocate more than `isize::MAX` bytes.
//!
//! # Examples
//!
//! You can explicitly create a [`Vec`] with [`Vec::new`]:
//!
//! ```
//! let v: Vec<i32> = Vec::new();
//! ```
//!
//! ...or by using the [`vec!`] macro:
//!
//! ```
//! let v: Vec<i32> = vec![];
//!
//! let v = vec![1, 2, 3, 4, 5];
//!
//! let v = vec![0; 10]; // ten zeroes
//! ```
//!
//! You can [`push`] values onto the end of a vector (which will grow the vector
//! as needed):
//!
//! ```
//! let mut v = vec![1, 2];
//!
//! v.push(3);
//! ```
//!
//! Popping values works in much the same way:
//!
//! ```
//! let mut v = vec![1, 2];
//!
//! let two = v.pop();
//! ```
//!
//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
//!
//! ```
//! let mut v = vec![1, 2, 3];
//! let three = v[2];
//! v[1] = v[1] + 5;
//! ```
//!
//! [`push`]: Vec::push
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(no_global_oom_handling))]
use core::cmp;
use core::cmp::Ordering;
use core::convert::TryFrom;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::intrinsics::{arith_offset, assume};
use core::iter;
#[cfg(not(no_global_oom_handling))]
use core::iter::FromIterator;
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop, MaybeUninit};
use core::ops::{self, Index, IndexMut, Range, RangeBounds};
use core::ptr::{self, NonNull};
use core::slice::{self, SliceIndex};
use crate::alloc::{Allocator, Global};
use crate::borrow::{Cow, ToOwned};
use crate::boxed::Box;
use crate::collections::TryReserveError;
use crate::raw_vec::RawVec;
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
pub use self::drain_filter::DrainFilter;
mod drain_filter;
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_splice", since = "1.21.0")]
pub use self::splice::Splice;
#[cfg(not(no_global_oom_handling))]
mod splice;
#[stable(feature = "drain", since = "1.6.0")]
pub use self::drain::Drain;
mod drain;
#[cfg(not(no_global_oom_handling))]
mod cow;
#[cfg(not(no_global_oom_handling))]
pub(crate) use self::in_place_collect::AsVecIntoIter;
#[stable(feature = "rust1", since = "1.0.0")]
pub use self::into_iter::IntoIter;
mod into_iter;
#[cfg(not(no_global_oom_handling))]
use self::is_zero::IsZero;
mod is_zero;
#[cfg(not(no_global_oom_handling))]
mod in_place_collect;
mod partial_eq;
#[cfg(not(no_global_oom_handling))]
use self::spec_from_elem::SpecFromElem;
#[cfg(not(no_global_oom_handling))]
mod spec_from_elem;
#[cfg(not(no_global_oom_handling))]
use self::set_len_on_drop::SetLenOnDrop;
#[cfg(not(no_global_oom_handling))]
mod set_len_on_drop;
#[cfg(not(no_global_oom_handling))]
use self::in_place_drop::InPlaceDrop;
#[cfg(not(no_global_oom_handling))]
mod in_place_drop;
#[cfg(not(no_global_oom_handling))]
use self::spec_from_iter_nested::SpecFromIterNested;
#[cfg(not(no_global_oom_handling))]
mod spec_from_iter_nested;
#[cfg(not(no_global_oom_handling))]
use self::spec_from_iter::SpecFromIter;
#[cfg(not(no_global_oom_handling))]
mod spec_from_iter;
#[cfg(not(no_global_oom_handling))]
use self::spec_extend::SpecExtend;
#[cfg(not(no_global_oom_handling))]
mod spec_extend;
/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::new();
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec[0], 1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
///
/// vec[0] = 7;
/// assert_eq!(vec[0], 7);
///
/// vec.extend([1, 2, 3].iter().copied());
///
/// for x in &vec {
/// println!("{x}");
/// }
/// assert_eq!(vec, [7, 1, 2, 3]);
/// ```
///
/// The [`vec!`] macro is provided for convenient initialization:
///
/// ```
/// let mut vec1 = vec![1, 2, 3];
/// vec1.push(4);
/// let vec2 = Vec::from([1, 2, 3, 4]);
/// assert_eq!(vec1, vec2);
/// ```
///
/// It can also initialize each element of a `Vec<T>` with a given value.
/// This may be more efficient than performing allocation and initialization
/// in separate steps, especially when initializing a vector of zeros:
///
/// ```
/// let vec = vec![0; 5];
/// assert_eq!(vec, [0, 0, 0, 0, 0]);
///
/// // The following is equivalent, but potentially slower:
/// let mut vec = Vec::with_capacity(5);
/// vec.resize(5, 0);
/// assert_eq!(vec, [0, 0, 0, 0, 0]);
/// ```
///
/// For more information, see
/// [Capacity and Reallocation](#capacity-and-reallocation).
///
/// Use a `Vec<T>` as an efficient stack:
///
/// ```
/// let mut stack = Vec::new();
///
/// stack.push(1);
/// stack.push(2);
/// stack.push(3);
///
/// while let Some(top) = stack.pop() {
/// // Prints 3, 2, 1
/// println!("{top}");
/// }
/// ```
///
/// # Indexing
///
/// The `Vec` type allows to access values by index, because it implements the
/// [`Index`] trait. An example will be more explicit:
///
/// ```
/// let v = vec![0, 2, 4, 6];
/// println!("{}", v[1]); // it will display '2'
/// ```
///
/// However be careful: if you try to access an index which isn't in the `Vec`,
/// your software will panic! You cannot do this:
///
/// ```should_panic
/// let v = vec![0, 2, 4, 6];
/// println!("{}", v[6]); // it will panic!
/// ```
///
/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
/// the `Vec`.
///
/// # Slicing
///
/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
/// To get a [slice][prim@slice], use [`&`]. Example:
///
/// ```
/// fn read_slice(slice: &[usize]) {
/// // ...
/// }
///
/// let v = vec![0, 1];
/// read_slice(&v);
///
/// // ... and that's all!
/// // you can also do it like this:
/// let u: &[usize] = &v;
/// // or like this:
/// let u: &[_] = &v;
/// ```
///
/// In Rust, it's more common to pass slices as arguments rather than vectors
/// when you just want to provide read access. The same goes for [`String`] and
/// [`&str`].
///
/// # Capacity and reallocation
///
/// The capacity of a vector is the amount of space allocated for any future
/// elements that will be added onto the vector. This is not to be confused with
/// the *length* of a vector, which specifies the number of actual elements
/// within the vector. If a vector's length exceeds its capacity, its capacity
/// will automatically be increased, but its elements will have to be
/// reallocated.
///
/// For example, a vector with capacity 10 and length 0 would be an empty vector
/// with space for 10 more elements. Pushing 10 or fewer elements onto the
/// vector will not change its capacity or cause reallocation to occur. However,
/// if the vector's length is increased to 11, it will have to reallocate, which
/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
/// whenever possible to specify how big the vector is expected to get.
///
/// # Guarantees
///
/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
/// about its design. This ensures that it's as low-overhead as possible in
/// the general case, and can be correctly manipulated in primitive ways
/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
/// If additional type parameters are added (e.g., to support custom allocators),
/// overriding their defaults may change the behavior.
///
/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
/// triplet. No more, no less. The order of these fields is completely
/// unspecified, and you should use the appropriate methods to modify these.
/// The pointer will never be null, so this type is null-pointer-optimized.
///
/// However, the pointer might not actually point to allocated memory. In particular,
/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
/// details are very subtle --- if you intend to allocate memory using a `Vec`
/// and use it for something else (either to pass to unsafe code, or to build your
/// own memory-backed collection), be sure to deallocate this memory by using
/// `from_raw_parts` to recover the `Vec` and then dropping it.
///
/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
/// (as defined by the allocator Rust is configured to use by default), and its
/// pointer points to [`len`] initialized, contiguous elements in order (what
/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
/// logically uninitialized, contiguous elements.
///
/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
/// visualized as below. The top part is the `Vec` struct, it contains a
/// pointer to the head of the allocation in the heap, length and capacity.
/// The bottom part is the allocation on the heap, a contiguous memory block.
///
/// ```text
/// ptr len capacity
/// +--------+--------+--------+
/// | 0x0123 | 2 | 4 |
/// +--------+--------+--------+
/// |
/// v
/// Heap +--------+--------+--------+--------+
/// | 'a' | 'b' | uninit | uninit |
/// +--------+--------+--------+--------+
/// ```
///
/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
/// layout (including the order of fields).
///
/// `Vec` will never perform a "small optimization" where elements are actually
/// stored on the stack for two reasons:
///
/// * It would make it more difficult for unsafe code to correctly manipulate
/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
/// only moved, and it would be more difficult to determine if a `Vec` had
/// actually allocated memory.
///
/// * It would penalize the general case, incurring an additional branch
/// on every access.
///
/// `Vec` will never automatically shrink itself, even if completely empty. This
/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
/// and then filling it back up to the same [`len`] should incur no calls to
/// the allocator. If you wish to free up unused memory, use
/// [`shrink_to_fit`] or [`shrink_to`].
///
/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
/// accurate, and can be relied on. It can even be used to manually free the memory
/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
/// when not necessary.
///
/// `Vec` does not guarantee any particular growth strategy when reallocating
/// when full, nor when [`reserve`] is called. The current strategy is basic
/// and it may prove desirable to use a non-constant growth factor. Whatever
/// strategy is used will of course guarantee *O*(1) amortized [`push`].
///
/// `vec![x; n]`, `vec![a, b, c, d]`, and
/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
/// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
///
/// `Vec` will not specifically overwrite any data that is removed from it,
/// but also won't specifically preserve it. Its uninitialized memory is
/// scratch space that it may use however it wants. It will generally just do
/// whatever is most efficient or otherwise easy to implement. Do not rely on
/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
/// first, that might not actually happen because the optimizer does not consider
/// this a side-effect that must be preserved. There is one case which we will
/// not break, however: using `unsafe` code to write to the excess capacity,
/// and then increasing the length to match, is always valid.
///
/// Currently, `Vec` does not guarantee the order in which elements are dropped.
/// The order has changed in the past and may change again.
///
/// [`get`]: ../../std/vec/struct.Vec.html#method.get
/// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
/// [`String`]: crate::string::String
/// [`&str`]: type@str
/// [`shrink_to_fit`]: Vec::shrink_to_fit
/// [`shrink_to`]: Vec::shrink_to
/// [capacity]: Vec::capacity
/// [`capacity`]: Vec::capacity
/// [mem::size_of::\<T>]: core::mem::size_of
/// [len]: Vec::len
/// [`len`]: Vec::len
/// [`push`]: Vec::push
/// [`insert`]: Vec::insert
/// [`reserve`]: Vec::reserve
/// [`MaybeUninit`]: core::mem::MaybeUninit
/// [owned slice]: Box
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
#[rustc_insignificant_dtor]
pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
buf: RawVec<T, A>,
len: usize,
}
////////////////////////////////////////////////////////////////////////////////
// Inherent methods
////////////////////////////////////////////////////////////////////////////////
impl<T> Vec<T> {
/// Constructs a new, empty `Vec<T>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// let mut vec: Vec<i32> = Vec::new();
/// ```
#[inline]
#[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub const fn new() -> Self {
Vec { buf: RawVec::NEW, len: 0 }
}
/// Constructs a new, empty `Vec<T>` with the specified capacity.
///
/// The vector will be able to hold exactly `capacity` elements without
/// reallocating. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// *capacity* specified, the vector will have a zero *length*. For an
/// explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
/// assert_eq!(vec.capacity(), 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert_eq!(vec.capacity(), 10);
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// assert_eq!(vec.len(), 11);
/// assert!(vec.capacity() >= 11);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
pub fn with_capacity(capacity: usize) -> Self {
Self::with_capacity_in(capacity, Global)
}
/// Creates a `Vec<T>` directly from the raw components of another vector.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
/// (at least, it's highly likely to be incorrect if it wasn't).
/// * `T` needs to have the same alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment really
/// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
/// allocated and deallocated with the same layout.)
/// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
/// to be the same size as the pointer was allocated with. (Because similar to
/// alignment, [`dealloc`] must be called with the same layout `size`.)
/// * `length` needs to be less than or equal to `capacity`.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is normally **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length
/// `size_t`, doing so is only safe if the array was initially allocated by
/// a `Vec` or `String`.
/// It's also not safe to build one from a `Vec<u16>` and its length, because
/// the allocator cares about the alignment, and these two types have different
/// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
/// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
/// these issues, it is often preferable to do casting/transmuting using
/// [`slice::from_raw_parts`] instead.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
///
/// # Examples
///
/// ```
/// use std::ptr;
/// use std::mem;
///
/// let v = vec![1, 2, 3];
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len as isize {
/// ptr::write(p.offset(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts(p, len, cap);
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
}
}
impl<T, A: Allocator> Vec<T, A> {
/// Constructs a new, empty `Vec<T, A>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// # #[allow(unused_mut)]
/// let mut vec: Vec<i32, _> = Vec::new_in(System);
/// ```
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
pub const fn new_in(alloc: A) -> Self {
Vec { buf: RawVec::new_in(alloc), len: 0 }
}
/// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
/// allocator.
///
/// The vector will be able to hold exactly `capacity` elements without
/// reallocating. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// *capacity* specified, the vector will have a zero *length*. For an
/// explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// let mut vec = Vec::with_capacity_in(10, System);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
/// assert_eq!(vec.capacity(), 10);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert_eq!(vec.capacity(), 10);
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// assert_eq!(vec.len(), 11);
/// assert!(vec.capacity() >= 11);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
}
/// Creates a `Vec<T, A>` directly from the raw components of another vector.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
/// (at least, it's highly likely to be incorrect if it wasn't).
/// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
/// (`T` having a less strict alignment is not sufficient, the alignment really
/// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
/// allocated and deallocated with the same layout.)
/// * `length` needs to be less than or equal to `capacity`.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
/// It's also not safe to build one from a `Vec<u16>` and its length, because
/// the allocator cares about the alignment, and these two types have different
/// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
/// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: crate::string::String
/// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
///
/// # Examples
///
/// ```
/// #![feature(allocator_api)]
///
/// use std::alloc::System;
///
/// use std::ptr;
/// use std::mem;
///
/// let mut v = Vec::with_capacity_in(3, System);
/// v.push(1);
/// v.push(2);
/// v.push(3);
///
// FIXME Update this when vec_into_raw_parts is stabilized
/// // Prevent running `v`'s destructor so we are in complete control
/// // of the allocation.
/// let mut v = mem::ManuallyDrop::new(v);
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
/// let alloc = v.allocator();
///
/// unsafe {
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len as isize {
/// ptr::write(p.offset(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
}
/// Decomposes a `Vec<T>` into its raw components.
///
/// Returns the raw pointer to the underlying data, the length of
/// the vector (in elements), and the allocated capacity of the
/// data (in elements). These are the same arguments in the same
/// order as the arguments to [`from_raw_parts`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Vec`. The only way to do
/// this is to convert the raw pointer, length, and capacity back
/// into a `Vec` with the [`from_raw_parts`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_raw_parts`]: Vec::from_raw_parts
///
/// # Examples
///
/// ```
/// #![feature(vec_into_raw_parts)]
/// let v: Vec<i32> = vec![-1, 0, 1];
///
/// let (ptr, len, cap) = v.into_raw_parts();
///
/// let rebuilt = unsafe {
/// // We can now make changes to the components, such as
/// // transmuting the raw pointer to a compatible type.
/// let ptr = ptr as *mut u32;
///
/// Vec::from_raw_parts(ptr, len, cap)
/// };
/// assert_eq!(rebuilt, [4294967295, 0, 1]);
/// ```
#[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
let mut me = ManuallyDrop::new(self);
(me.as_mut_ptr(), me.len(), me.capacity())
}
/// Decomposes a `Vec<T>` into its raw components.
///
/// Returns the raw pointer to the underlying data, the length of the vector (in elements),
/// the allocated capacity of the data (in elements), and the allocator. These are the same
/// arguments in the same order as the arguments to [`from_raw_parts_in`].
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `Vec`. The only way to do
/// this is to convert the raw pointer, length, and capacity back
/// into a `Vec` with the [`from_raw_parts_in`] function, allowing
/// the destructor to perform the cleanup.
///
/// [`from_raw_parts_in`]: Vec::from_raw_parts_in
///
/// # Examples
///
/// ```
/// #![feature(allocator_api, vec_into_raw_parts)]
///
/// use std::alloc::System;
///
/// let mut v: Vec<i32, System> = Vec::new_in(System);
/// v.push(-1);
/// v.push(0);
/// v.push(1);
///
/// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
///
/// let rebuilt = unsafe {
/// // We can now make changes to the components, such as
/// // transmuting the raw pointer to a compatible type.
/// let ptr = ptr as *mut u32;
///
/// Vec::from_raw_parts_in(ptr, len, cap, alloc)
/// };
/// assert_eq!(rebuilt, [4294967295, 0, 1]);
/// ```
#[unstable(feature = "allocator_api", issue = "32838")]
// #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
let mut me = ManuallyDrop::new(self);
let len = me.len();
let capacity = me.capacity();
let ptr = me.as_mut_ptr();
let alloc = unsafe { ptr::read(me.allocator()) };
(ptr, len, capacity, alloc)
}
/// Returns the number of elements the vector can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// let vec: Vec<i32> = Vec::with_capacity(10);
/// assert_eq!(vec.capacity(), 10);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn capacity(&self) -> usize {
self.buf.capacity()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the given `Vec<T>`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.reserve(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve(&mut self, additional: usize) {
self.buf.reserve(self.len, additional);
}
/// Reserves the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`reserve`] if future insertions are expected.
///
/// [`reserve`]: Vec::reserve
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.reserve_exact(10);
/// assert!(vec.capacity() >= 11);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn reserve_exact(&mut self, additional: usize) {
self.buf.reserve_exact(self.len, additional);
}
/// Tries to reserve capacity for at least `additional` more elements to be inserted
/// in the given `Vec<T>`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
/// let mut output = Vec::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[stable(feature = "try_reserve", since = "1.57.0")]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.buf.try_reserve(self.len, additional)
}
/// Tries to reserve the minimum capacity for exactly `additional`
/// elements to be inserted in the given `Vec<T>`. After calling
/// `try_reserve_exact`, capacity will be greater than or equal to
/// `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`try_reserve`] if future insertions are expected.
///
/// [`try_reserve`]: Vec::try_reserve
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
/// let mut output = Vec::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// output.try_reserve_exact(data.len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// output.extend(data.iter().map(|&val| {
/// val * 2 + 5 // very complicated
/// }));
///
/// Ok(output)
/// }
/// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
/// ```
#[stable(feature = "try_reserve", since = "1.57.0")]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.buf.try_reserve_exact(self.len, additional)
}
/// Shrinks the capacity of the vector as much as possible.
///
/// It will drop down as close as possible to the length but the allocator
/// may still inform the vector that there is space for a few more elements.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
/// assert_eq!(vec.capacity(), 10);
/// vec.shrink_to_fit();
/// assert!(vec.capacity() >= 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn shrink_to_fit(&mut self) {
// The capacity is never less than the length, and there's nothing to do when
// they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
// by only calling it with a greater capacity.
if self.capacity() > self.len {
self.buf.shrink_to_fit(self.len);
}
}
/// Shrinks the capacity of the vector with a lower bound.
///
/// The capacity will remain at least as large as both the length
/// and the supplied value.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// # Examples
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
/// assert_eq!(vec.capacity(), 10);
/// vec.shrink_to(4);
/// assert!(vec.capacity() >= 4);
/// vec.shrink_to(0);
/// assert!(vec.capacity() >= 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shrink_to", since = "1.56.0")]
pub fn shrink_to(&mut self, min_capacity: usize) {
if self.capacity() > min_capacity {
self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
}
}
/// Converts the vector into [`Box<[T]>`][owned slice].
///
/// Note that this will drop any excess capacity.
///
/// [owned slice]: Box
///
/// # Examples
///
/// ```
/// let v = vec![1, 2, 3];
///
/// let slice = v.into_boxed_slice();
/// ```
///
/// Any excess capacity is removed:
///
/// ```
/// let mut vec = Vec::with_capacity(10);
/// vec.extend([1, 2, 3]);
///
/// assert_eq!(vec.capacity(), 10);
/// let slice = vec.into_boxed_slice();
/// assert_eq!(slice.into_vec().capacity(), 3);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_boxed_slice(mut self) -> Box<[T], A> {
unsafe {
self.shrink_to_fit();
let me = ManuallyDrop::new(self);
let buf = ptr::read(&me.buf);
let len = me.len();
buf.into_box(len).assume_init()
}
}
/// Shortens the vector, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater than the vector's current length, this has no
/// effect.
///
/// The [`drain`] method can emulate `truncate`, but causes the excess
/// elements to be returned instead of dropped.
///
/// Note that this method has no effect on the allocated capacity
/// of the vector.
///
/// # Examples
///
/// Truncating a five element vector to two elements:
///
/// ```
/// let mut vec = vec![1, 2, 3, 4, 5];
/// vec.truncate(2);
/// assert_eq!(vec, [1, 2]);
/// ```
///
/// No truncation occurs when `len` is greater than the vector's current
/// length:
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.truncate(8);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
///
/// Truncating when `len == 0` is equivalent to calling the [`clear`]
/// method.
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.truncate(0);
/// assert_eq!(vec, []);
/// ```
///
/// [`clear`]: Vec::clear
/// [`drain`]: Vec::drain
#[stable(feature = "rust1", since = "1.0.0")]
pub fn truncate(&mut self, len: usize) {
// This is safe because:
//
// * the slice passed to `drop_in_place` is valid; the `len > self.len`
// case avoids creating an invalid slice, and
// * the `len` of the vector is shrunk before calling `drop_in_place`,
// such that no value will be dropped twice in case `drop_in_place`
// were to panic once (if it panics twice, the program aborts).
unsafe {
// Note: It's intentional that this is `>` and not `>=`.
// Changing it to `>=` has negative performance
// implications in some cases. See #78884 for more.
if len > self.len {
return;
}
let remaining_len = self.len - len;
let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
self.len = len;
ptr::drop_in_place(s);
}
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
///
/// ```
/// use std::io::{self, Write};
/// let buffer = vec![1, 2, 3, 5, 8];
/// io::sink().write(buffer.as_slice()).unwrap();
/// ```
#[inline]
#[stable(feature = "vec_as_slice", since = "1.7.0")]
pub fn as_slice(&self) -> &[T] {
self
}
/// Extracts a mutable slice of the entire vector.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
///
/// ```
/// use std::io::{self, Read};
/// let mut buffer = vec![0; 3];
/// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
/// ```
#[inline]
#[stable(feature = "vec_as_slice", since = "1.7.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Returns a raw pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// # Examples
///
/// ```
/// let x = vec![1, 2, 4];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(*x_ptr.add(i), 1 << i);
/// }
/// }
/// ```
///
/// [`as_mut_ptr`]: Vec::as_mut_ptr
#[stable(feature = "vec_as_ptr", since = "1.37.0")]
#[inline]
pub fn as_ptr(&self) -> *const T {
// We shadow the slice method of the same name to avoid going through
// `deref`, which creates an intermediate reference.
let ptr = self.buf.ptr();
unsafe {
assume(!ptr.is_null());
}
ptr
}
/// Returns an unsafe mutable pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// // Allocate vector big enough for 4 elements.
/// let size = 4;
/// let mut x: Vec<i32> = Vec::with_capacity(size);
/// let x_ptr = x.as_mut_ptr();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// *x_ptr.add(i) = i as i32;
/// }
/// x.set_len(size);
/// }
/// assert_eq!(&*x, &[0, 1, 2, 3]);
/// ```
#[stable(feature = "vec_as_ptr", since = "1.37.0")]
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
// We shadow the slice method of the same name to avoid going through
// `deref_mut`, which creates an intermediate reference.
let ptr = self.buf.ptr();
unsafe {
assume(!ptr.is_null());
}
ptr
}
/// Returns a reference to the underlying allocator.
#[unstable(feature = "allocator_api", issue = "32838")]
#[inline]
pub fn allocator(&self) -> &A {
self.buf.allocator()
}
/// Forces the length of the vector to `new_len`.
///
/// This is a low-level operation that maintains none of the normal
/// invariants of the type. Normally changing the length of a vector
/// is done using one of the safe operations instead, such as
/// [`truncate`], [`resize`], [`extend`], or [`clear`].
///
/// [`truncate`]: Vec::truncate
/// [`resize`]: Vec::resize
/// [`extend`]: Extend::extend
/// [`clear`]: Vec::clear
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`].
/// - The elements at `old_len..new_len` must be initialized.
///
/// [`capacity()`]: Vec::capacity
///
/// # Examples
///
/// This method can be useful for situations in which the vector
/// is serving as a buffer for other code, particularly over FFI:
///
/// ```no_run
/// # #![allow(dead_code)]
/// # // This is just a minimal skeleton for the doc example;
/// # // don't use this as a starting point for a real library.
/// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
/// # const Z_OK: i32 = 0;
/// # extern "C" {
/// # fn deflateGetDictionary(
/// # strm: *mut std::ffi::c_void,
/// # dictionary: *mut u8,
/// # dictLength: *mut usize,
/// # ) -> i32;
/// # }
/// # impl StreamWrapper {
/// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
/// // Per the FFI method's docs, "32768 bytes is always enough".
/// let mut dict = Vec::with_capacity(32_768);
/// let mut dict_length = 0;
/// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
/// // 1. `dict_length` elements were initialized.
/// // 2. `dict_length` <= the capacity (32_768)
/// // which makes `set_len` safe to call.
/// unsafe {
/// // Make the FFI call...
/// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
/// if r == Z_OK {
/// // ...and update the length to what was initialized.
/// dict.set_len(dict_length);
/// Some(dict)
/// } else {
/// None
/// }
/// }
/// }
/// # }
/// ```
///
/// While the following example is sound, there is a memory leak since
/// the inner vectors were not freed prior to the `set_len` call:
///
/// ```
/// let mut vec = vec![vec![1, 0, 0],
/// vec![0, 1, 0],
/// vec![0, 0, 1]];
/// // SAFETY:
/// // 1. `old_len..0` is empty so no elements need to be initialized.
/// // 2. `0 <= capacity` always holds whatever `capacity` is.
/// unsafe {
/// vec.set_len(0);
/// }
/// ```
///
/// Normally, here, one would use [`clear`] instead to correctly drop
/// the contents and thus not leak memory.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len;
}
/// Removes an element from the vector and returns it.
///
/// The removed element is replaced by the last element of the vector.
///
/// This does not preserve ordering, but is *O*(1).
/// If you need to preserve the element order, use [`remove`] instead.
///
/// [`remove`]: Vec::remove
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = vec!["foo", "bar", "baz", "qux"];
///
/// assert_eq!(v.swap_remove(1), "bar");
/// assert_eq!(v, ["foo", "qux", "baz"]);
///
/// assert_eq!(v.swap_remove(0), "foo");
/// assert_eq!(v, ["baz", "qux"]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn swap_remove(&mut self, index: usize) -> T {
#[cold]
#[inline(never)]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("swap_remove index (is {index}) should be < len (is {len})");
}
let len = self.len();
if index >= len {
assert_failed(index, len);
}
unsafe {
// We replace self[index] with the last element. Note that if the
// bounds check above succeeds there must be a last element (which
// can be self[index] itself).
let value = ptr::read(self.as_ptr().add(index));
let base_ptr = self.as_mut_ptr();
ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
self.set_len(len - 1);
value
}
}
/// Inserts an element at position `index` within the vector, shifting all
/// elements after it to the right.
///
/// # Panics
///
/// Panics if `index > len`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.insert(1, 4);
/// assert_eq!(vec, [1, 4, 2, 3]);
/// vec.insert(4, 5);
/// assert_eq!(vec, [1, 4, 2, 3, 5]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn insert(&mut self, index: usize, element: T) {
#[cold]
#[inline(never)]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("insertion index (is {index}) should be <= len (is {len})");
}
let len = self.len();
if index > len {
assert_failed(index, len);
}
// space for the new element
if len == self.buf.capacity() {
self.reserve(1);
}
unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().add(index);
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.offset(1), len - index);
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
}
/// Removes and returns the element at position `index` within the vector,
/// shifting all elements after it to the left.
///
/// Note: Because this shifts over the remaining elements, it has a
/// worst-case performance of *O*(*n*). If you don't need the order of elements
/// to be preserved, use [`swap_remove`] instead. If you'd like to remove
/// elements from the beginning of the `Vec`, consider using
/// [`VecDeque::pop_front`] instead.
///
/// [`swap_remove`]: Vec::swap_remove
/// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
/// assert_eq!(v.remove(1), 2);
/// assert_eq!(v, [1, 3]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[track_caller]
pub fn remove(&mut self, index: usize) -> T {
#[cold]
#[inline(never)]
#[track_caller]
fn assert_failed(index: usize, len: usize) -> ! {
panic!("removal index (is {index}) should be < len (is {len})");
}
let len = self.len();
if index >= len {
assert_failed(index, len);
}
unsafe {
// infallible
let ret;
{
// the place we are taking from.
let ptr = self.as_mut_ptr().add(index);
// copy it out, unsafely having a copy of the value on
// the stack and in the vector at the same time.
ret = ptr::read(ptr);
// Shift everything down to fill in that spot.
ptr::copy(ptr.offset(1), ptr, len - index - 1);
}
self.set_len(len - 1);
ret
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` for which `f(&e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3, 4];
/// vec.retain(|&x| x % 2 == 0);
/// assert_eq!(vec, [2, 4]);
/// ```
///
/// Because the elements are visited exactly once in the original order,
/// external state may be used to decide which elements to keep.
///
/// ```
/// let mut vec = vec![1, 2, 3, 4, 5];
/// let keep = [false, true, true, false, true];
/// let mut iter = keep.iter();
/// vec.retain(|_| *iter.next().unwrap());
/// assert_eq!(vec, [2, 3, 5]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
self.retain_mut(|elem| f(elem));
}
/// Retains only the elements specified by the predicate, passing a mutable reference to it.
///
/// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3, 4];
/// vec.retain_mut(|x| if *x > 3 {
/// false
/// } else {
/// *x += 1;
/// true
/// });
/// assert_eq!(vec, [2, 3, 4]);
/// ```
#[stable(feature = "vec_retain_mut", since = "1.61.0")]
pub fn retain_mut<F>(&mut self, mut f: F)
where
F: FnMut(&mut T) -> bool,
{
let original_len = self.len();
// Avoid double drop if the drop guard is not executed,
// since we may make some holes during the process.
unsafe { self.set_len(0) };
// Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
// |<- processed len ->| ^- next to check
// |<- deleted cnt ->|
// |<- original_len ->|
// Kept: Elements which predicate returns true on.
// Hole: Moved or dropped element slot.
// Unchecked: Unchecked valid elements.
//
// This drop guard will be invoked when predicate or `drop` of element panicked.
// It shifts unchecked elements to cover holes and `set_len` to the correct length.
// In cases when predicate and `drop` never panick, it will be optimized out.
struct BackshiftOnDrop<'a, T, A: Allocator> {
v: &'a mut Vec<T, A>,
processed_len: usize,
deleted_cnt: usize,
original_len: usize,
}
impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
fn drop(&mut self) {
if self.deleted_cnt > 0 {
// SAFETY: Trailing unchecked items must be valid since we never touch them.
unsafe {
ptr::copy(
self.v.as_ptr().add(self.processed_len),
self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
self.original_len - self.processed_len,
);
}
}
// SAFETY: After filling holes, all items are in contiguous memory.
unsafe {
self.v.set_len(self.original_len - self.deleted_cnt);
}
}
}
let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
fn process_loop<F, T, A: Allocator, const DELETED: bool>(
original_len: usize,
f: &mut F,
g: &mut BackshiftOnDrop<'_, T, A>,
) where
F: FnMut(&mut T) -> bool,
{
while g.processed_len != original_len {
// SAFETY: Unchecked element must be valid.
let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
if !f(cur) {
// Advance early to avoid double drop if `drop_in_place` panicked.
g.processed_len += 1;
g.deleted_cnt += 1;
// SAFETY: We never touch this element again after dropped.
unsafe { ptr::drop_in_place(cur) };
// We already advanced the counter.
if DELETED {
continue;
} else {
break;
}
}
if DELETED {
// SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
// We use copy for move, and never touch this element again.
unsafe {
let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
ptr::copy_nonoverlapping(cur, hole_slot, 1);
}
}
g.processed_len += 1;
}
}
// Stage 1: Nothing was deleted.
process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
// Stage 2: Some elements were deleted.
process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
// All item are processed. This can be optimized to `set_len` by LLVM.
drop(g);
}
/// Removes all but the first of consecutive elements in the vector that resolve to the same
/// key.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec![10, 20, 21, 30, 20];
///
/// vec.dedup_by_key(|i| *i / 10);
///
/// assert_eq!(vec, [10, 20, 30, 20]);
/// ```
#[stable(feature = "dedup_by", since = "1.16.0")]
#[inline]
pub fn dedup_by_key<F, K>(&mut self, mut key: F)
where
F: FnMut(&mut T) -> K,
K: PartialEq,
{
self.dedup_by(|a, b| key(a) == key(b))
}
/// Removes all but the first of consecutive elements in the vector satisfying a given equality
/// relation.
///
/// The `same_bucket` function is passed references to two elements from the vector and
/// must determine if the elements compare equal. The elements are passed in opposite order
/// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
///
/// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
///
/// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
/// ```
#[stable(feature = "dedup_by", since = "1.16.0")]
pub fn dedup_by<F>(&mut self, mut same_bucket: F)
where
F: FnMut(&mut T, &mut T) -> bool,
{
let len = self.len();
if len <= 1 {
return;
}
/* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
/* Offset of the element we want to check if it is duplicate */
read: usize,
/* Offset of the place where we want to place the non-duplicate
* when we find it. */
write: usize,
/* The Vec that would need correction if `same_bucket` panicked */
vec: &'a mut Vec<T, A>,
}
impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
fn drop(&mut self) {
/* This code gets executed when `same_bucket` panics */
/* SAFETY: invariant guarantees that `read - write`
* and `len - read` never overflow and that the copy is always
* in-bounds. */
unsafe {
let ptr = self.vec.as_mut_ptr();
let len = self.vec.len();
/* How many items were left when `same_bucket` panicked.
* Basically vec[read..].len() */
let items_left = len.wrapping_sub(self.read);
/* Pointer to first item in vec[write..write+items_left] slice */
let dropped_ptr = ptr.add(self.write);
/* Pointer to first item in vec[read..] slice */
let valid_ptr = ptr.add(self.read);
/* Copy `vec[read..]` to `vec[write..write+items_left]`.
* The slices can overlap, so `copy_nonoverlapping` cannot be used */
ptr::copy(valid_ptr, dropped_ptr, items_left);
/* How many items have been already dropped
* Basically vec[read..write].len() */
let dropped = self.read.wrapping_sub(self.write);
self.vec.set_len(len - dropped);
}
}
}
let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
let ptr = gap.vec.as_mut_ptr();
/* Drop items while going through Vec, it should be more efficient than
* doing slice partition_dedup + truncate */
/* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
* are always in-bounds and read_ptr never aliases prev_ptr */
unsafe {
while gap.read < len {
let read_ptr = ptr.add(gap.read);
let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
// Increase `gap.read` now since the drop may panic.
gap.read += 1;
/* We have found duplicate, drop it in-place */
ptr::drop_in_place(read_ptr);
} else {
let write_ptr = ptr.add(gap.write);
/* Because `read_ptr` can be equal to `write_ptr`, we either
* have to use `copy` or conditional `copy_nonoverlapping`.
* Looks like the first option is faster. */
ptr::copy(read_ptr, write_ptr, 1);
/* We have filled that place, so go further */
gap.write += 1;
gap.read += 1;
}
}
/* Technically we could let `gap` clean up with its Drop, but
* when `same_bucket` is guaranteed to not panic, this bloats a little
* the codegen, so we just do it manually */
gap.vec.set_len(gap.write);
mem::forget(gap);
}
}
/// Appends an element to the back of a collection.
///
/// # Panics
///
/// Panics if the new capacity exceeds `isize::MAX` bytes.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2];
/// vec.push(3);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push(&mut self, value: T) {
// This will panic or abort if we would allocate > isize::MAX bytes
// or if the length increment would overflow for zero-sized types.
if self.len == self.buf.capacity() {
self.buf.reserve_for_push(self.len);
}
unsafe {
let end = self.as_mut_ptr().add(self.len);
ptr::write(end, value);
self.len += 1;
}
}
/// Tries to append an element to the back of a collection.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2];
/// vec.try_push(3).unwrap();
/// assert_eq!(vec, [1, 2, 3]);
/// ```
#[inline]
#[stable(feature = "kernel", since = "1.0.0")]
pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
if self.len == self.buf.capacity() {
self.buf.try_reserve_for_push(self.len)?;
}
unsafe {
let end = self.as_mut_ptr().add(self.len);
ptr::write(end, value);
self.len += 1;
}
Ok(())
}
/// Removes the last element from a vector and returns it, or [`None`] if it
/// is empty.
///
/// If you'd like to pop the first element, consider using
/// [`VecDeque::pop_front`] instead.
///
/// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// assert_eq!(vec.pop(), Some(3));
/// assert_eq!(vec, [1, 2]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
None
} else {
unsafe {
self.len -= 1;
Some(ptr::read(self.as_ptr().add(self.len())))
}
}
}
/// Moves all the elements of `other` into `self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// let mut vec2 = vec![4, 5, 6];
/// vec.append(&mut vec2);
/// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(vec2, []);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "append", since = "1.4.0")]
pub fn append(&mut self, other: &mut Self) {
unsafe {
self.append_elements(other.as_slice() as _);
other.set_len(0);
}
}
/// Appends elements to `self` from other buffer.
#[cfg(not(no_global_oom_handling))]
#[inline]
unsafe fn append_elements(&mut self, other: *const [T]) {
let count = unsafe { (*other).len() };
self.reserve(count);
let len = self.len();
unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
self.len += count;
}
/// Removes the specified range from the vector in bulk, returning all
/// removed elements as an iterator. If the iterator is dropped before
/// being fully consumed, it drops the remaining removed elements.
///
/// The returned iterator keeps a mutable borrow on the vector to optimize
/// its implementation.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Leaking
///
/// If the returned iterator goes out of scope without being dropped (due to
/// [`mem::forget`], for example), the vector may have lost and leaked
/// elements arbitrarily, including elements outside the range.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
/// let u: Vec<_> = v.drain(1..).collect();
/// assert_eq!(v, &[1]);
/// assert_eq!(u, &[2, 3]);
///
/// // A full range clears the vector, like `clear()` does
/// v.drain(..);
/// assert_eq!(v, &[]);
/// ```
#[stable(feature = "drain", since = "1.6.0")]
pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
where
R: RangeBounds<usize>,
{
// Memory safety
//
// When the Drain is first created, it shortens the length of
// the source vector to make sure no uninitialized or moved-from elements
// are accessible at all if the Drain's destructor never gets to run.
//
// Drain will ptr::read out the values to remove.
// When finished, remaining tail of the vec is copied back to cover
// the hole, and the vector length is restored to the new length.
//
let len = self.len();
let Range { start, end } = slice::range(range, ..len);
unsafe {
// set self.vec length's to start, to be safe in case Drain is leaked
self.set_len(start);
// Use the borrow in the IterMut to indicate borrowing behavior of the
// whole Drain iterator (like &mut T).
let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
Drain {
tail_start: end,
tail_len: len - end,
iter: range_slice.iter(),
vec: NonNull::from(self),
}
}
}
/// Clears the vector, removing all values.
///
/// Note that this method has no effect on the allocated capacity
/// of the vector.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3];
///
/// v.clear();
///
/// assert!(v.is_empty());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
let elems: *mut [T] = self.as_mut_slice();
// SAFETY:
// - `elems` comes directly from `as_mut_slice` and is therefore valid.
// - Setting `self.len` before calling `drop_in_place` means that,
// if an element's `Drop` impl panics, the vector's `Drop` impl will
// do nothing (leaking the rest of the elements) instead of dropping
// some twice.
unsafe {
self.len = 0;
ptr::drop_in_place(elems);
}
}
/// Returns the number of elements in the vector, also referred to
/// as its 'length'.
///
/// # Examples
///
/// ```
/// let a = vec![1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the vector contains no elements.
///
/// # Examples
///
/// ```
/// let mut v = Vec::new();
/// assert!(v.is_empty());
///
/// v.push(1);
/// assert!(!v.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated vector containing the elements in the range
/// `[at, len)`. After the call, the original vector will be left containing
/// the elements `[0, at)` with its previous capacity unchanged.
///
/// # Panics
///
/// Panics if `at > len`.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// let vec2 = vec.split_off(1);
/// assert_eq!(vec, [1]);
/// assert_eq!(vec2, [2, 3]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[must_use = "use `.truncate()` if you don't need the other half"]
#[stable(feature = "split_off", since = "1.4.0")]
pub fn split_off(&mut self, at: usize) -> Self
where
A: Clone,
{
#[cold]
#[inline(never)]
fn assert_failed(at: usize, len: usize) -> ! {
panic!("`at` split index (is {at}) should be <= len (is {len})");
}
if at > self.len() {
assert_failed(at, self.len());
}
if at == 0 {
// the new vector can take over the original buffer and avoid the copy
return mem::replace(
self,
Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
);
}
let other_len = self.len - at;
let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
// Unsafely `set_len` and copy items to `other`.
unsafe {
self.set_len(at);
other.set_len(other_len);
ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
}
other
}
/// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `Vec` is extended by the
/// difference, with each additional slot filled with the result of
/// calling the closure `f`. The return values from `f` will end up
/// in the `Vec` in the order they have been generated.
///
/// If `new_len` is less than `len`, the `Vec` is simply truncated.
///
/// This method uses a closure to create new values on every push. If
/// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
/// want to use the [`Default`] trait to generate values, you can
/// pass [`Default::default`] as the second argument.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 3];
/// vec.resize_with(5, Default::default);
/// assert_eq!(vec, [1, 2, 3, 0, 0]);
///
/// let mut vec = vec![];
/// let mut p = 1;
/// vec.resize_with(4, || { p *= 2; p });
/// assert_eq!(vec, [2, 4, 8, 16]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_resize_with", since = "1.33.0")]
pub fn resize_with<F>(&mut self, new_len: usize, f: F)
where
F: FnMut() -> T,
{
let len = self.len();
if new_len > len {
self.extend_with(new_len - len, ExtendFunc(f));
} else {
self.truncate(new_len);
}
}
/// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
/// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
/// `'a`. If the type has only static references, or none at all, then this
/// may be chosen to be `'static`.
///
/// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
/// so the leaked allocation may include unused capacity that is not part
/// of the returned slice.
///
/// This function is mainly useful for data that lives for the remainder of
/// the program's life. Dropping the returned reference will cause a memory
/// leak.
///
/// # Examples
///
/// Simple usage:
///
/// ```
/// let x = vec![1, 2, 3];
/// let static_ref: &'static mut [usize] = x.leak();
/// static_ref[0] += 1;
/// assert_eq!(static_ref, &[2, 2, 3]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_leak", since = "1.47.0")]
#[inline]
pub fn leak<'a>(self) -> &'a mut [T]
where
A: 'a,
{
let mut me = ManuallyDrop::new(self);
unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
}
/// Returns the remaining spare capacity of the vector as a slice of
/// `MaybeUninit<T>`.
///
/// The returned slice can be used to fill the vector with data (e.g. by
/// reading from a file) before marking the data as initialized using the
/// [`set_len`] method.
///
/// [`set_len`]: Vec::set_len
///
/// # Examples
///
/// ```
/// // Allocate vector big enough for 10 elements.
/// let mut v = Vec::with_capacity(10);
///
/// // Fill in the first 3 elements.
/// let uninit = v.spare_capacity_mut();
/// uninit[0].write(0);
/// uninit[1].write(1);
/// uninit[2].write(2);
///
/// // Mark the first 3 elements of the vector as being initialized.
/// unsafe {
/// v.set_len(3);
/// }
///
/// assert_eq!(&v, &[0, 1, 2]);
/// ```
#[stable(feature = "vec_spare_capacity", since = "1.60.0")]
#[inline]
pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
// Note:
// This method is not implemented in terms of `split_at_spare_mut`,
// to prevent invalidation of pointers to the buffer.
unsafe {
slice::from_raw_parts_mut(
self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
self.buf.capacity() - self.len,
)
}
}
/// Returns vector content as a slice of `T`, along with the remaining spare
/// capacity of the vector as a slice of `MaybeUninit<T>`.
///
/// The returned spare capacity slice can be used to fill the vector with data
/// (e.g. by reading from a file) before marking the data as initialized using
/// the [`set_len`] method.
///
/// [`set_len`]: Vec::set_len
///
/// Note that this is a low-level API, which should be used with care for
/// optimization purposes. If you need to append data to a `Vec`
/// you can use [`push`], [`extend`], [`extend_from_slice`],
/// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
/// [`resize_with`], depending on your exact needs.
///
/// [`push`]: Vec::push
/// [`extend`]: Vec::extend
/// [`extend_from_slice`]: Vec::extend_from_slice
/// [`extend_from_within`]: Vec::extend_from_within
/// [`insert`]: Vec::insert
/// [`append`]: Vec::append
/// [`resize`]: Vec::resize
/// [`resize_with`]: Vec::resize_with
///
/// # Examples
///
/// ```
/// #![feature(vec_split_at_spare)]
///
/// let mut v = vec![1, 1, 2];
///
/// // Reserve additional space big enough for 10 elements.
/// v.reserve(10);
///
/// let (init, uninit) = v.split_at_spare_mut();
/// let sum = init.iter().copied().sum::<u32>();
///
/// // Fill in the next 4 elements.
/// uninit[0].write(sum);
/// uninit[1].write(sum * 2);
/// uninit[2].write(sum * 3);
/// uninit[3].write(sum * 4);
///
/// // Mark the 4 elements of the vector as being initialized.
/// unsafe {
/// let len = v.len();
/// v.set_len(len + 4);
/// }
///
/// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
/// ```
#[unstable(feature = "vec_split_at_spare", issue = "81944")]
#[inline]
pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
// SAFETY:
// - len is ignored and so never changed
let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
(init, spare)
}
/// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
///
/// This method provides unique access to all vec parts at once in `extend_from_within`.
unsafe fn split_at_spare_mut_with_len(
&mut self,
) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
let ptr = self.as_mut_ptr();
// SAFETY:
// - `ptr` is guaranteed to be valid for `self.len` elements
// - but the allocation extends out to `self.buf.capacity()` elements, possibly
// uninitialized
let spare_ptr = unsafe { ptr.add(self.len) };
let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
let spare_len = self.buf.capacity() - self.len;
// SAFETY:
// - `ptr` is guaranteed to be valid for `self.len` elements
// - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
unsafe {
let initialized = slice::from_raw_parts_mut(ptr, self.len);
let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
(initialized, spare, &mut self.len)
}
}
}
impl<T: Clone, A: Allocator> Vec<T, A> {
/// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `Vec` is extended by the
/// difference, with each additional slot filled with `value`.
/// If `new_len` is less than `len`, the `Vec` is simply truncated.
///
/// This method requires `T` to implement [`Clone`],
/// in order to be able to clone the passed value.
/// If you need more flexibility (or want to rely on [`Default`] instead of
/// [`Clone`]), use [`Vec::resize_with`].
/// If you only need to resize to a smaller size, use [`Vec::truncate`].
///
/// # Examples
///
/// ```
/// let mut vec = vec!["hello"];
/// vec.resize(3, "world");
/// assert_eq!(vec, ["hello", "world", "world"]);
///
/// let mut vec = vec![1, 2, 3, 4];
/// vec.resize(2, 0);
/// assert_eq!(vec, [1, 2]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_resize", since = "1.5.0")]
pub fn resize(&mut self, new_len: usize, value: T) {
let len = self.len();
if new_len > len {
self.extend_with(new_len - len, ExtendElement(value))
} else {
self.truncate(new_len);
}
}
/// Clones and appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
/// it to this `Vec`. The `other` slice is traversed in-order.
///
/// Note that this function is same as [`extend`] except that it is
/// specialized to work with slices instead. If and when Rust gets
/// specialization this function will likely be deprecated (but still
/// available).
///
/// # Examples
///
/// ```
/// let mut vec = vec![1];
/// vec.extend_from_slice(&[2, 3, 4]);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// [`extend`]: Vec::extend
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
pub fn extend_from_slice(&mut self, other: &[T]) {
self.spec_extend(other.iter())
}
/// Copies elements from `src` range to the end of the vector.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// let mut vec = vec![0, 1, 2, 3, 4];
///
/// vec.extend_from_within(2..);
/// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
///
/// vec.extend_from_within(..2);
/// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
///
/// vec.extend_from_within(4..8);
/// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_extend_from_within", since = "1.53.0")]
pub fn extend_from_within<R>(&mut self, src: R)
where
R: RangeBounds<usize>,
{
let range = slice::range(src, ..self.len());
self.reserve(range.len());
// SAFETY:
// - `slice::range` guarantees that the given range is valid for indexing self
unsafe {
self.spec_extend_from_within(range);
}
}
}
impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
/// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
///
/// # Panics
///
/// Panics if the length of the resulting vector would overflow a `usize`.
///
/// This is only possible when flattening a vector of arrays of zero-sized
/// types, and thus tends to be irrelevant in practice. If
/// `size_of::<T>() > 0`, this will never panic.
///
/// # Examples
///
/// ```
/// #![feature(slice_flatten)]
///
/// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
/// assert_eq!(vec.pop(), Some([7, 8, 9]));
///
/// let mut flattened = vec.into_flattened();
/// assert_eq!(flattened.pop(), Some(6));
/// ```
#[unstable(feature = "slice_flatten", issue = "95629")]
pub fn into_flattened(self) -> Vec<T, A> {
let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
(len.checked_mul(N).expect("vec len overflow"), usize::MAX)
} else {
// SAFETY:
// - `cap * N` cannot overflow because the allocation is already in
// the address space.
// - Each `[T; N]` has `N` valid elements, so there are `len * N`
// valid elements in the allocation.
unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
};
// SAFETY:
// - `ptr` was allocated by `self`
// - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
// - `new_cap` refers to the same sized allocation as `cap` because
// `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
// - `len` <= `cap`, so `len * N` <= `cap * N`.
unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
}
}
// This code generalizes `extend_with_{element,default}`.
trait ExtendWith<T> {
fn next(&mut self) -> T;
fn last(self) -> T;
}
struct ExtendElement<T>(T);
impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
fn next(&mut self) -> T {
self.0.clone()
}
fn last(self) -> T {
self.0
}
}
struct ExtendFunc<F>(F);
impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
fn next(&mut self) -> T {
(self.0)()
}
fn last(mut self) -> T {
(self.0)()
}
}
impl<T, A: Allocator> Vec<T, A> {
#[cfg(not(no_global_oom_handling))]
/// Extend the vector by `n` values, using the given generator.
fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
self.reserve(n);
unsafe {
let mut ptr = self.as_mut_ptr().add(self.len());
// Use SetLenOnDrop to work around bug where compiler
// might not realize the store through `ptr` through self.set_len()
// don't alias.
let mut local_len = SetLenOnDrop::new(&mut self.len);
// Write all elements except the last one
for _ in 1..n {
ptr::write(ptr, value.next());
ptr = ptr.offset(1);
// Increment the length in every step in case next() panics
local_len.increment_len(1);
}
if n > 0 {
// We can write the last element directly without cloning needlessly
ptr::write(ptr, value.last());
local_len.increment_len(1);
}
// len set by scope guard
}
}
}
impl<T: PartialEq, A: Allocator> Vec<T, A> {
/// Removes consecutive repeated elements in the vector according to the
/// [`PartialEq`] trait implementation.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// let mut vec = vec![1, 2, 2, 3, 2];
///
/// vec.dedup();
///
/// assert_eq!(vec, [1, 2, 3, 2]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn dedup(&mut self) {
self.dedup_by(|a, b| a == b)
}
}
////////////////////////////////////////////////////////////////////////////////
// Internal methods and functions
////////////////////////////////////////////////////////////////////////////////
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
<T as SpecFromElem>::from_elem(elem, n, Global)
}
#[doc(hidden)]
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "allocator_api", issue = "32838")]
pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
<T as SpecFromElem>::from_elem(elem, n, alloc)
}
trait ExtendFromWithinSpec {
/// # Safety
///
/// - `src` needs to be valid index
/// - `self.capacity() - self.len()` must be `>= src.len()`
unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
}
impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
// SAFETY:
// - len is increased only after initializing elements
let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
// SAFETY:
// - caller guaratees that src is a valid index
let to_clone = unsafe { this.get_unchecked(src) };
iter::zip(to_clone, spare)
.map(|(src, dst)| dst.write(src.clone()))
// Note:
// - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
// - len is increased after each element to prevent leaks (see issue #82533)
.for_each(|_| *len += 1);
}
}
impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
let count = src.len();
{
let (init, spare) = self.split_at_spare_mut();
// SAFETY:
// - caller guaratees that `src` is a valid index
let source = unsafe { init.get_unchecked(src) };
// SAFETY:
// - Both pointers are created from unique slice references (`&mut [_]`)
// so they are valid and do not overlap.
// - Elements are :Copy so it's OK to to copy them, without doing
// anything with the original values
// - `count` is equal to the len of `source`, so source is valid for
// `count` reads
// - `.reserve(count)` guarantees that `spare.len() >= count` so spare
// is valid for `count` writes
unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
}
// SAFETY:
// - The elements were just initialized by `copy_nonoverlapping`
self.len += count;
}
}
////////////////////////////////////////////////////////////////////////////////
// Common trait implementations for Vec
////////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ops::Deref for Vec<T, A> {
type Target = [T];
fn deref(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
fn deref_mut(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
}
}
#[cfg(not(no_global_oom_handling))]
trait SpecCloneFrom {
fn clone_from(this: &mut Self, other: &Self);
}
#[cfg(not(no_global_oom_handling))]
impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
default fn clone_from(this: &mut Self, other: &Self) {
// drop anything that will not be overwritten
this.truncate(other.len());
// self.len <= other.len due to the truncate above, so the
// slices here are always in-bounds.
let (init, tail) = other.split_at(this.len());
// reuse the contained values' allocations/resources.
this.clone_from_slice(init);
this.extend_from_slice(tail);
}
}
#[cfg(not(no_global_oom_handling))]
impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
fn clone_from(this: &mut Self, other: &Self) {
this.clear();
this.extend_from_slice(other);
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
#[cfg(not(test))]
fn clone(&self) -> Self {
let alloc = self.allocator().clone();
<[T]>::to_vec_in(&**self, alloc)
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Instead use the
// `slice::to_vec` function which is only available with cfg(test)
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn clone(&self) -> Self {
let alloc = self.allocator().clone();
crate::slice::to_vec(&**self, alloc)
}
fn clone_from(&mut self, other: &Self) {
SpecCloneFrom::clone_from(self, other)
}
}
/// The hash of a vector is the same as that of the corresponding slice,
/// as required by the `core::borrow::Borrow` implementation.
///
/// ```
/// #![feature(build_hasher_simple_hash_one)]
/// use std::hash::BuildHasher;
///
/// let b = std::collections::hash_map::RandomState::new();
/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
/// assert_eq!(b.hash_one(v), b.hash_one(s));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash(&**self, state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
message = "vector indices are of type `usize` or ranges of `usize`",
label = "vector indices are of type `usize` or ranges of `usize`"
)]
impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(&**self, index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
message = "vector indices are of type `usize` or ranges of `usize`",
label = "vector indices are of type `usize` or ranges of `usize`"
)]
impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(&mut **self, index)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> FromIterator<T> for Vec<T> {
#[inline]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
<Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> IntoIterator for Vec<T, A> {
type Item = T;
type IntoIter = IntoIter<T, A>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the vector (from start to end). The vector cannot be used after calling
/// this.
///
/// # Examples
///
/// ```
/// let v = vec!["a".to_string(), "b".to_string()];
/// for s in v.into_iter() {
/// // s has type String, not &String
/// println!("{s}");
/// }
/// ```
#[inline]
fn into_iter(self) -> IntoIter<T, A> {
unsafe {
let mut me = ManuallyDrop::new(self);
let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
let begin = me.as_mut_ptr();
let end = if mem::size_of::<T>() == 0 {
arith_offset(begin as *const i8, me.len() as isize) as *const T
} else {
begin.add(me.len()) as *const T
};
let cap = me.buf.capacity();
IntoIter {
buf: NonNull::new_unchecked(begin),
phantom: PhantomData,
cap,
alloc,
ptr: begin,
end,
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> slice::IterMut<'a, T> {
self.iter_mut()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> Extend<T> for Vec<T, A> {
#[inline]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
<Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
}
#[inline]
fn extend_one(&mut self, item: T) {
self.push(item);
}
#[inline]
fn extend_reserve(&mut self, additional: usize) {
self.reserve(additional);
}
}
impl<T, A: Allocator> Vec<T, A> {
// leaf method to which various SpecFrom/SpecExtend implementations delegate when
// they have no further optimizations to apply
#[cfg(not(no_global_oom_handling))]
fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
// This is the case for a general iterator.
//
// This function should be the moral equivalent of:
//
// for item in iterator {
// self.push(item);
// }
while let Some(element) = iterator.next() {
let len = self.len();
if len == self.capacity() {
let (lower, _) = iterator.size_hint();
self.reserve(lower.saturating_add(1));
}
unsafe {
ptr::write(self.as_mut_ptr().add(len), element);
// Since next() executes user code which can panic we have to bump the length
// after each step.
// NB can't overflow since we would have had to alloc the address space
self.set_len(len + 1);
}
}
}
/// Creates a splicing iterator that replaces the specified range in the vector
/// with the given `replace_with` iterator and yields the removed items.
/// `replace_with` does not need to be the same length as `range`.
///
/// `range` is removed even if the iterator is not consumed until the end.
///
/// It is unspecified how many elements are removed from the vector
/// if the `Splice` value is leaked.
///
/// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
///
/// This is optimal if:
///
/// * The tail (elements in the vector after `range`) is empty,
/// * or `replace_with` yields fewer or equal elements than `range`s length
/// * or the lower bound of its `size_hint()` is exact.
///
/// Otherwise, a temporary vector is allocated and the tail is moved twice.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// let mut v = vec![1, 2, 3, 4];
/// let new = [7, 8, 9];
/// let u: Vec<_> = v.splice(1..3, new).collect();
/// assert_eq!(v, &[1, 7, 8, 9, 4]);
/// assert_eq!(u, &[2, 3]);
/// ```
#[cfg(not(no_global_oom_handling))]
#[inline]
#[stable(feature = "vec_splice", since = "1.21.0")]
pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
where
R: RangeBounds<usize>,
I: IntoIterator<Item = T>,
{
Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
}
/// Creates an iterator which uses a closure to determine if an element should be removed.
///
/// If the closure returns true, then the element is removed and yielded.
/// If the closure returns false, the element will remain in the vector and will not be yielded
/// by the iterator.
///
/// Using this method is equivalent to the following code:
///
/// ```
/// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
/// # let mut vec = vec![1, 2, 3, 4, 5, 6];
/// let mut i = 0;
/// while i < vec.len() {
/// if some_predicate(&mut vec[i]) {
/// let val = vec.remove(i);
/// // your code here
/// } else {
/// i += 1;
/// }
/// }
///
/// # assert_eq!(vec, vec![1, 4, 5]);
/// ```
///
/// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
/// because it can backshift the elements of the array in bulk.
///
/// Note that `drain_filter` also lets you mutate every element in the filter closure,
/// regardless of whether you choose to keep or remove it.
///
/// # Examples
///
/// Splitting an array into evens and odds, reusing the original allocation:
///
/// ```
/// #![feature(drain_filter)]
/// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
///
/// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
/// let odds = numbers;
///
/// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
/// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
/// ```
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
where
F: FnMut(&mut T) -> bool,
{
let old_len = self.len();
// Guard against us getting leaked (leak amplification)
unsafe {
self.set_len(0);
}
DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
}
}
/// Extend implementation that copies elements out of references before pushing them onto the Vec.
///
/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
/// append the entire slice at once.
///
/// [`copy_from_slice`]: slice::copy_from_slice
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.spec_extend(iter.into_iter())
}
#[inline]
fn extend_one(&mut self, &item: &'a T) {
self.push(item);
}
#[inline]
fn extend_reserve(&mut self, additional: usize) {
self.reserve(additional);
}
}
/// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
/// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
fn drop(&mut self) {
unsafe {
// use drop for [T]
// use a raw slice to refer to the elements of the vector as weakest necessary type;
// could avoid questions of validity in certain cases
ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
}
// RawVec handles deallocation
}
}
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
impl<T> const Default for Vec<T> {
/// Creates an empty `Vec<T>`.
fn default() -> Vec<T> {
Vec::new()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
fn as_ref(&self) -> &Vec<T, A> {
self
}
}
#[stable(feature = "vec_as_mut", since = "1.5.0")]
impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
fn as_mut(&mut self) -> &mut Vec<T, A> {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
fn as_ref(&self) -> &[T] {
self
}
}
#[stable(feature = "vec_as_mut", since = "1.5.0")]
impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
fn as_mut(&mut self) -> &mut [T] {
self
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> From<&[T]> for Vec<T> {
/// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
/// ```
#[cfg(not(test))]
fn from(s: &[T]) -> Vec<T> {
s.to_vec()
}
#[cfg(test)]
fn from(s: &[T]) -> Vec<T> {
crate::slice::to_vec(s, Global)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_from_mut", since = "1.19.0")]
impl<T: Clone> From<&mut [T]> for Vec<T> {
/// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
/// ```
#[cfg(not(test))]
fn from(s: &mut [T]) -> Vec<T> {
s.to_vec()
}
#[cfg(test)]
fn from(s: &mut [T]) -> Vec<T> {
crate::slice::to_vec(s, Global)
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "vec_from_array", since = "1.44.0")]
impl<T, const N: usize> From<[T; N]> for Vec<T> {
/// Allocate a `Vec<T>` and move `s`'s items into it.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
/// ```
#[cfg(not(test))]
fn from(s: [T; N]) -> Vec<T> {
<[T]>::into_vec(box s)
}
#[cfg(test)]
fn from(s: [T; N]) -> Vec<T> {
crate::slice::into_vec(box s)
}
}
#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
where
[T]: ToOwned<Owned = Vec<T>>,
{
/// Convert a clone-on-write slice into a vector.
///
/// If `s` already owns a `Vec<T>`, it will be returned directly.
/// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
/// filled by cloning `s`'s items into it.
///
/// # Examples
///
/// ```
/// # use std::borrow::Cow;
/// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
/// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
/// assert_eq!(Vec::from(o), Vec::from(b));
/// ```
fn from(s: Cow<'a, [T]>) -> Vec<T> {
s.into_owned()
}
}
// note: test pulls in libstd, which causes errors here
#[cfg(not(test))]
#[stable(feature = "vec_from_box", since = "1.18.0")]
impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
/// Convert a boxed slice into a vector by transferring ownership of
/// the existing heap allocation.
///
/// # Examples
///
/// ```
/// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
/// assert_eq!(Vec::from(b), vec![1, 2, 3]);
/// ```
fn from(s: Box<[T], A>) -> Self {
s.into_vec()
}
}
// note: test pulls in libstd, which causes errors here
#[cfg(not(no_global_oom_handling))]
#[cfg(not(test))]
#[stable(feature = "box_from_vec", since = "1.20.0")]
impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
/// Convert a vector into a boxed slice.
///
/// If `v` has excess capacity, its items will be moved into a
/// newly-allocated buffer with exactly the right capacity.
///
/// # Examples
///
/// ```
/// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
/// ```
fn from(v: Vec<T, A>) -> Self {
v.into_boxed_slice()
}
}
#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl From<&str> for Vec<u8> {
/// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
///
/// # Examples
///
/// ```
/// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
/// ```
fn from(s: &str) -> Vec<u8> {
From::from(s.as_bytes())
}
}
#[stable(feature = "array_try_from_vec", since = "1.48.0")]
impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
type Error = Vec<T, A>;
/// Gets the entire contents of the `Vec<T>` as an array,
/// if its size exactly matches that of the requested array.
///
/// # Examples
///
/// ```
/// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
/// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
/// ```
///
/// If the length doesn't match, the input comes back in `Err`:
/// ```
/// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
/// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
/// ```
///
/// If you're fine with just getting a prefix of the `Vec<T>`,
/// you can call [`.truncate(N)`](Vec::truncate) first.
/// ```
/// let mut v = String::from("hello world").into_bytes();
/// v.sort();
/// v.truncate(2);
/// let [a, b]: [_; 2] = v.try_into().unwrap();
/// assert_eq!(a, b' ');
/// assert_eq!(b, b'd');
/// ```
fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
if vec.len() != N {
return Err(vec);
}
// SAFETY: `.set_len(0)` is always sound.
unsafe { vec.set_len(0) };
// SAFETY: A `Vec`'s pointer is always aligned properly, and
// the alignment the array needs is the same as the items.
// We checked earlier that we have sufficient items.
// The items will not double-drop as the `set_len`
// tells the `Vec` not to also drop them.
let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
Ok(array)
}
}