linuxdebug/drivers/bus/mhi/host/pm.c

1284 lines
36 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
*
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mhi.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include "internal.h"
/*
* Not all MHI state transitions are synchronous. Transitions like Linkdown,
* SYS_ERR, and shutdown can happen anytime asynchronously. This function will
* transition to a new state only if we're allowed to.
*
* Priority increases as we go down. For instance, from any state in L0, the
* transition can be made to states in L1, L2 and L3. A notable exception to
* this rule is state DISABLE. From DISABLE state we can only transition to
* POR state. Also, while in L2 state, user cannot jump back to previous
* L1 or L0 states.
*
* Valid transitions:
* L0: DISABLE <--> POR
* POR <--> POR
* POR -> M0 -> M2 --> M0
* POR -> FW_DL_ERR
* FW_DL_ERR <--> FW_DL_ERR
* M0 <--> M0
* M0 -> FW_DL_ERR
* M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
* L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
* L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT
* SHUTDOWN_PROCESS -> DISABLE
* L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
* LD_ERR_FATAL_DETECT -> DISABLE
*/
static const struct mhi_pm_transitions dev_state_transitions[] = {
/* L0 States */
{
MHI_PM_DISABLE,
MHI_PM_POR
},
{
MHI_PM_POR,
MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
},
{
MHI_PM_M0,
MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
},
{
MHI_PM_M2,
MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT
},
{
MHI_PM_M3_ENTER,
MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT
},
{
MHI_PM_M3,
MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
MHI_PM_LD_ERR_FATAL_DETECT
},
{
MHI_PM_M3_EXIT,
MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT
},
{
MHI_PM_FW_DL_ERR,
MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
},
/* L1 States */
{
MHI_PM_SYS_ERR_DETECT,
MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT
},
{
MHI_PM_SYS_ERR_PROCESS,
MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
MHI_PM_LD_ERR_FATAL_DETECT
},
/* L2 States */
{
MHI_PM_SHUTDOWN_PROCESS,
MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
},
/* L3 States */
{
MHI_PM_LD_ERR_FATAL_DETECT,
MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE
},
};
enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
enum mhi_pm_state state)
{
unsigned long cur_state = mhi_cntrl->pm_state;
int index = find_last_bit(&cur_state, 32);
if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
return cur_state;
if (unlikely(dev_state_transitions[index].from_state != cur_state))
return cur_state;
if (unlikely(!(dev_state_transitions[index].to_states & state)))
return cur_state;
mhi_cntrl->pm_state = state;
return mhi_cntrl->pm_state;
}
void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret;
if (state == MHI_STATE_RESET) {
ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
MHICTRL_RESET_MASK, 1);
} else {
ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
MHICTRL_MHISTATE_MASK, state);
}
if (ret)
dev_err(dev, "Failed to set MHI state to: %s\n",
mhi_state_str(state));
}
/* NOP for backward compatibility, host allowed to ring DB in M2 state */
static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
{
}
static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
{
mhi_cntrl->wake_get(mhi_cntrl, false);
mhi_cntrl->wake_put(mhi_cntrl, true);
}
/* Handle device ready state transition */
int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
{
struct mhi_event *mhi_event;
enum mhi_pm_state cur_state;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
u32 interval_us = 25000; /* poll register field every 25 milliseconds */
int ret, i;
/* Check if device entered error state */
if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
dev_err(dev, "Device link is not accessible\n");
return -EIO;
}
/* Wait for RESET to be cleared and READY bit to be set by the device */
ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
MHICTRL_RESET_MASK, 0, interval_us);
if (ret) {
dev_err(dev, "Device failed to clear MHI Reset\n");
return ret;
}
ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS,
MHISTATUS_READY_MASK, 1, interval_us);
if (ret) {
dev_err(dev, "Device failed to enter MHI Ready\n");
return ret;
}
dev_dbg(dev, "Device in READY State\n");
write_lock_irq(&mhi_cntrl->pm_lock);
cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
mhi_cntrl->dev_state = MHI_STATE_READY;
write_unlock_irq(&mhi_cntrl->pm_lock);
if (cur_state != MHI_PM_POR) {
dev_err(dev, "Error moving to state %s from %s\n",
to_mhi_pm_state_str(MHI_PM_POR),
to_mhi_pm_state_str(cur_state));
return -EIO;
}
read_lock_bh(&mhi_cntrl->pm_lock);
if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
dev_err(dev, "Device registers not accessible\n");
goto error_mmio;
}
/* Configure MMIO registers */
ret = mhi_init_mmio(mhi_cntrl);
if (ret) {
dev_err(dev, "Error configuring MMIO registers\n");
goto error_mmio;
}
/* Add elements to all SW event rings */
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
/* Skip if this is an offload or HW event */
if (mhi_event->offload_ev || mhi_event->hw_ring)
continue;
ring->wp = ring->base + ring->len - ring->el_size;
*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
/* Update all cores */
smp_wmb();
/* Ring the event ring db */
spin_lock_irq(&mhi_event->lock);
mhi_ring_er_db(mhi_event);
spin_unlock_irq(&mhi_event->lock);
}
/* Set MHI to M0 state */
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
read_unlock_bh(&mhi_cntrl->pm_lock);
return 0;
error_mmio:
read_unlock_bh(&mhi_cntrl->pm_lock);
return -EIO;
}
int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
{
enum mhi_pm_state cur_state;
struct mhi_chan *mhi_chan;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int i;
write_lock_irq(&mhi_cntrl->pm_lock);
mhi_cntrl->dev_state = MHI_STATE_M0;
cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
write_unlock_irq(&mhi_cntrl->pm_lock);
if (unlikely(cur_state != MHI_PM_M0)) {
dev_err(dev, "Unable to transition to M0 state\n");
return -EIO;
}
mhi_cntrl->M0++;
/* Wake up the device */
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->wake_get(mhi_cntrl, true);
/* Ring all event rings and CMD ring only if we're in mission mode */
if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
struct mhi_cmd *mhi_cmd =
&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
spin_lock_irq(&mhi_event->lock);
mhi_ring_er_db(mhi_event);
spin_unlock_irq(&mhi_event->lock);
}
/* Only ring primary cmd ring if ring is not empty */
spin_lock_irq(&mhi_cmd->lock);
if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
spin_unlock_irq(&mhi_cmd->lock);
}
/* Ring channel DB registers */
mhi_chan = mhi_cntrl->mhi_chan;
for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
if (mhi_chan->db_cfg.reset_req) {
write_lock_irq(&mhi_chan->lock);
mhi_chan->db_cfg.db_mode = true;
write_unlock_irq(&mhi_chan->lock);
}
read_lock_irq(&mhi_chan->lock);
/* Only ring DB if ring is not empty */
if (tre_ring->base && tre_ring->wp != tre_ring->rp &&
mhi_chan->ch_state == MHI_CH_STATE_ENABLED)
mhi_ring_chan_db(mhi_cntrl, mhi_chan);
read_unlock_irq(&mhi_chan->lock);
}
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
wake_up_all(&mhi_cntrl->state_event);
return 0;
}
/*
* After receiving the MHI state change event from the device indicating the
* transition to M1 state, the host can transition the device to M2 state
* for keeping it in low power state.
*/
void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
{
enum mhi_pm_state state;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
write_lock_irq(&mhi_cntrl->pm_lock);
state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
if (state == MHI_PM_M2) {
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
mhi_cntrl->dev_state = MHI_STATE_M2;
write_unlock_irq(&mhi_cntrl->pm_lock);
mhi_cntrl->M2++;
wake_up_all(&mhi_cntrl->state_event);
/* If there are any pending resources, exit M2 immediately */
if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
atomic_read(&mhi_cntrl->dev_wake))) {
dev_dbg(dev,
"Exiting M2, pending_pkts: %d dev_wake: %d\n",
atomic_read(&mhi_cntrl->pending_pkts),
atomic_read(&mhi_cntrl->dev_wake));
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->wake_get(mhi_cntrl, true);
mhi_cntrl->wake_put(mhi_cntrl, true);
read_unlock_bh(&mhi_cntrl->pm_lock);
} else {
mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
}
} else {
write_unlock_irq(&mhi_cntrl->pm_lock);
}
}
/* MHI M3 completion handler */
int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
{
enum mhi_pm_state state;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
write_lock_irq(&mhi_cntrl->pm_lock);
mhi_cntrl->dev_state = MHI_STATE_M3;
state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
write_unlock_irq(&mhi_cntrl->pm_lock);
if (state != MHI_PM_M3) {
dev_err(dev, "Unable to transition to M3 state\n");
return -EIO;
}
mhi_cntrl->M3++;
wake_up_all(&mhi_cntrl->state_event);
return 0;
}
/* Handle device Mission Mode transition */
static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
{
struct mhi_event *mhi_event;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee;
int i, ret;
dev_dbg(dev, "Processing Mission Mode transition\n");
write_lock_irq(&mhi_cntrl->pm_lock);
if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
ee = mhi_get_exec_env(mhi_cntrl);
if (!MHI_IN_MISSION_MODE(ee)) {
mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
write_unlock_irq(&mhi_cntrl->pm_lock);
wake_up_all(&mhi_cntrl->state_event);
return -EIO;
}
mhi_cntrl->ee = ee;
write_unlock_irq(&mhi_cntrl->pm_lock);
wake_up_all(&mhi_cntrl->state_event);
device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
mhi_destroy_device);
mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
/* Force MHI to be in M0 state before continuing */
ret = __mhi_device_get_sync(mhi_cntrl);
if (ret)
return ret;
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
ret = -EIO;
goto error_mission_mode;
}
/* Add elements to all HW event rings */
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
if (mhi_event->offload_ev || !mhi_event->hw_ring)
continue;
ring->wp = ring->base + ring->len - ring->el_size;
*ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size);
/* Update to all cores */
smp_wmb();
spin_lock_irq(&mhi_event->lock);
if (MHI_DB_ACCESS_VALID(mhi_cntrl))
mhi_ring_er_db(mhi_event);
spin_unlock_irq(&mhi_event->lock);
}
read_unlock_bh(&mhi_cntrl->pm_lock);
/*
* The MHI devices are only created when the client device switches its
* Execution Environment (EE) to either SBL or AMSS states
*/
mhi_create_devices(mhi_cntrl);
read_lock_bh(&mhi_cntrl->pm_lock);
error_mission_mode:
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
return ret;
}
/* Handle shutdown transitions */
static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl)
{
enum mhi_pm_state cur_state;
struct mhi_event *mhi_event;
struct mhi_cmd_ctxt *cmd_ctxt;
struct mhi_cmd *mhi_cmd;
struct mhi_event_ctxt *er_ctxt;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret, i;
dev_dbg(dev, "Processing disable transition with PM state: %s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state));
mutex_lock(&mhi_cntrl->pm_mutex);
/* Trigger MHI RESET so that the device will not access host memory */
if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
/* Skip MHI RESET if in RDDM state */
if (mhi_cntrl->rddm_image && mhi_get_exec_env(mhi_cntrl) == MHI_EE_RDDM)
goto skip_mhi_reset;
dev_dbg(dev, "Triggering MHI Reset in device\n");
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
/* Wait for the reset bit to be cleared by the device */
ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
MHICTRL_RESET_MASK, 0, 25000);
if (ret)
dev_err(dev, "Device failed to clear MHI Reset\n");
/*
* Device will clear BHI_INTVEC as a part of RESET processing,
* hence re-program it
*/
mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
/* wait for ready to be set */
ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs,
MHISTATUS,
MHISTATUS_READY_MASK, 1, 25000);
if (ret)
dev_err(dev, "Device failed to enter READY state\n");
}
}
skip_mhi_reset:
dev_dbg(dev,
"Waiting for all pending event ring processing to complete\n");
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
disable_irq(mhi_cntrl->irq[mhi_event->irq]);
tasklet_kill(&mhi_event->task);
}
/* Release lock and wait for all pending threads to complete */
mutex_unlock(&mhi_cntrl->pm_mutex);
dev_dbg(dev, "Waiting for all pending threads to complete\n");
wake_up_all(&mhi_cntrl->state_event);
dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
mutex_lock(&mhi_cntrl->pm_mutex);
WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
/* Reset the ev rings and cmd rings */
dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
mhi_cmd = mhi_cntrl->mhi_cmd;
cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
struct mhi_ring *ring = &mhi_cmd->ring;
ring->rp = ring->base;
ring->wp = ring->base;
cmd_ctxt->rp = cmd_ctxt->rbase;
cmd_ctxt->wp = cmd_ctxt->rbase;
}
mhi_event = mhi_cntrl->mhi_event;
er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
/* Skip offload events */
if (mhi_event->offload_ev)
continue;
ring->rp = ring->base;
ring->wp = ring->base;
er_ctxt->rp = er_ctxt->rbase;
er_ctxt->wp = er_ctxt->rbase;
}
/* Move to disable state */
write_lock_irq(&mhi_cntrl->pm_lock);
cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
write_unlock_irq(&mhi_cntrl->pm_lock);
if (unlikely(cur_state != MHI_PM_DISABLE))
dev_err(dev, "Error moving from PM state: %s to: %s\n",
to_mhi_pm_state_str(cur_state),
to_mhi_pm_state_str(MHI_PM_DISABLE));
dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
mhi_state_str(mhi_cntrl->dev_state));
mutex_unlock(&mhi_cntrl->pm_mutex);
}
/* Handle system error transitions */
static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl)
{
enum mhi_pm_state cur_state, prev_state;
enum dev_st_transition next_state;
struct mhi_event *mhi_event;
struct mhi_cmd_ctxt *cmd_ctxt;
struct mhi_cmd *mhi_cmd;
struct mhi_event_ctxt *er_ctxt;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret, i;
dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
/* We must notify MHI control driver so it can clean up first */
mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
mutex_lock(&mhi_cntrl->pm_mutex);
write_lock_irq(&mhi_cntrl->pm_lock);
prev_state = mhi_cntrl->pm_state;
cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
write_unlock_irq(&mhi_cntrl->pm_lock);
if (cur_state != MHI_PM_SYS_ERR_PROCESS) {
dev_err(dev, "Failed to transition from PM state: %s to: %s\n",
to_mhi_pm_state_str(cur_state),
to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS));
goto exit_sys_error_transition;
}
mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
mhi_cntrl->dev_state = MHI_STATE_RESET;
/* Wake up threads waiting for state transition */
wake_up_all(&mhi_cntrl->state_event);
/* Trigger MHI RESET so that the device will not access host memory */
if (MHI_REG_ACCESS_VALID(prev_state)) {
u32 in_reset = -1;
unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
dev_dbg(dev, "Triggering MHI Reset in device\n");
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
/* Wait for the reset bit to be cleared by the device */
ret = wait_event_timeout(mhi_cntrl->state_event,
mhi_read_reg_field(mhi_cntrl,
mhi_cntrl->regs,
MHICTRL,
MHICTRL_RESET_MASK,
&in_reset) ||
!in_reset, timeout);
if (!ret || in_reset) {
dev_err(dev, "Device failed to exit MHI Reset state\n");
goto exit_sys_error_transition;
}
/*
* Device will clear BHI_INTVEC as a part of RESET processing,
* hence re-program it
*/
mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
}
dev_dbg(dev,
"Waiting for all pending event ring processing to complete\n");
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
tasklet_kill(&mhi_event->task);
}
/* Release lock and wait for all pending threads to complete */
mutex_unlock(&mhi_cntrl->pm_mutex);
dev_dbg(dev, "Waiting for all pending threads to complete\n");
wake_up_all(&mhi_cntrl->state_event);
dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device);
mutex_lock(&mhi_cntrl->pm_mutex);
WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
/* Reset the ev rings and cmd rings */
dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
mhi_cmd = mhi_cntrl->mhi_cmd;
cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
struct mhi_ring *ring = &mhi_cmd->ring;
ring->rp = ring->base;
ring->wp = ring->base;
cmd_ctxt->rp = cmd_ctxt->rbase;
cmd_ctxt->wp = cmd_ctxt->rbase;
}
mhi_event = mhi_cntrl->mhi_event;
er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
/* Skip offload events */
if (mhi_event->offload_ev)
continue;
ring->rp = ring->base;
ring->wp = ring->base;
er_ctxt->rp = er_ctxt->rbase;
er_ctxt->wp = er_ctxt->rbase;
}
/* Transition to next state */
if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) {
write_lock_irq(&mhi_cntrl->pm_lock);
cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
write_unlock_irq(&mhi_cntrl->pm_lock);
if (cur_state != MHI_PM_POR) {
dev_err(dev, "Error moving to state %s from %s\n",
to_mhi_pm_state_str(MHI_PM_POR),
to_mhi_pm_state_str(cur_state));
goto exit_sys_error_transition;
}
next_state = DEV_ST_TRANSITION_PBL;
} else {
next_state = DEV_ST_TRANSITION_READY;
}
mhi_queue_state_transition(mhi_cntrl, next_state);
exit_sys_error_transition:
dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
mhi_state_str(mhi_cntrl->dev_state));
mutex_unlock(&mhi_cntrl->pm_mutex);
}
/* Queue a new work item and schedule work */
int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
enum dev_st_transition state)
{
struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
unsigned long flags;
if (!item)
return -ENOMEM;
item->state = state;
spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
list_add_tail(&item->node, &mhi_cntrl->transition_list);
spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker);
return 0;
}
/* SYS_ERR worker */
void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
/* skip if controller supports RDDM */
if (mhi_cntrl->rddm_image) {
dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
return;
}
mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
}
/* Device State Transition worker */
void mhi_pm_st_worker(struct work_struct *work)
{
struct state_transition *itr, *tmp;
LIST_HEAD(head);
struct mhi_controller *mhi_cntrl = container_of(work,
struct mhi_controller,
st_worker);
struct device *dev = &mhi_cntrl->mhi_dev->dev;
spin_lock_irq(&mhi_cntrl->transition_lock);
list_splice_tail_init(&mhi_cntrl->transition_list, &head);
spin_unlock_irq(&mhi_cntrl->transition_lock);
list_for_each_entry_safe(itr, tmp, &head, node) {
list_del(&itr->node);
dev_dbg(dev, "Handling state transition: %s\n",
TO_DEV_STATE_TRANS_STR(itr->state));
switch (itr->state) {
case DEV_ST_TRANSITION_PBL:
write_lock_irq(&mhi_cntrl->pm_lock);
if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
write_unlock_irq(&mhi_cntrl->pm_lock);
mhi_fw_load_handler(mhi_cntrl);
break;
case DEV_ST_TRANSITION_SBL:
write_lock_irq(&mhi_cntrl->pm_lock);
mhi_cntrl->ee = MHI_EE_SBL;
write_unlock_irq(&mhi_cntrl->pm_lock);
/*
* The MHI devices are only created when the client
* device switches its Execution Environment (EE) to
* either SBL or AMSS states
*/
mhi_create_devices(mhi_cntrl);
if (mhi_cntrl->fbc_download)
mhi_download_amss_image(mhi_cntrl);
break;
case DEV_ST_TRANSITION_MISSION_MODE:
mhi_pm_mission_mode_transition(mhi_cntrl);
break;
case DEV_ST_TRANSITION_FP:
write_lock_irq(&mhi_cntrl->pm_lock);
mhi_cntrl->ee = MHI_EE_FP;
write_unlock_irq(&mhi_cntrl->pm_lock);
mhi_create_devices(mhi_cntrl);
break;
case DEV_ST_TRANSITION_READY:
mhi_ready_state_transition(mhi_cntrl);
break;
case DEV_ST_TRANSITION_SYS_ERR:
mhi_pm_sys_error_transition(mhi_cntrl);
break;
case DEV_ST_TRANSITION_DISABLE:
mhi_pm_disable_transition(mhi_cntrl);
break;
default:
break;
}
kfree(itr);
}
}
int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
{
struct mhi_chan *itr, *tmp;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
enum mhi_pm_state new_state;
int ret;
if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
return -EINVAL;
if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
return -EIO;
/* Return busy if there are any pending resources */
if (atomic_read(&mhi_cntrl->dev_wake) ||
atomic_read(&mhi_cntrl->pending_pkts))
return -EBUSY;
/* Take MHI out of M2 state */
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->wake_get(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
ret = wait_event_timeout(mhi_cntrl->state_event,
mhi_cntrl->dev_state == MHI_STATE_M0 ||
mhi_cntrl->dev_state == MHI_STATE_M1 ||
MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
msecs_to_jiffies(mhi_cntrl->timeout_ms));
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
dev_err(dev,
"Could not enter M0/M1 state");
return -EIO;
}
write_lock_irq(&mhi_cntrl->pm_lock);
if (atomic_read(&mhi_cntrl->dev_wake) ||
atomic_read(&mhi_cntrl->pending_pkts)) {
write_unlock_irq(&mhi_cntrl->pm_lock);
return -EBUSY;
}
dev_dbg(dev, "Allowing M3 transition\n");
new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
if (new_state != MHI_PM_M3_ENTER) {
write_unlock_irq(&mhi_cntrl->pm_lock);
dev_err(dev,
"Error setting to PM state: %s from: %s\n",
to_mhi_pm_state_str(MHI_PM_M3_ENTER),
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
/* Set MHI to M3 and wait for completion */
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
write_unlock_irq(&mhi_cntrl->pm_lock);
dev_dbg(dev, "Waiting for M3 completion\n");
ret = wait_event_timeout(mhi_cntrl->state_event,
mhi_cntrl->dev_state == MHI_STATE_M3 ||
MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
msecs_to_jiffies(mhi_cntrl->timeout_ms));
if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
dev_err(dev,
"Did not enter M3 state, MHI state: %s, PM state: %s\n",
mhi_state_str(mhi_cntrl->dev_state),
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
/* Notify clients about entering LPM */
list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
mutex_lock(&itr->mutex);
if (itr->mhi_dev)
mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
mutex_unlock(&itr->mutex);
}
return 0;
}
EXPORT_SYMBOL_GPL(mhi_pm_suspend);
static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force)
{
struct mhi_chan *itr, *tmp;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
enum mhi_pm_state cur_state;
int ret;
dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n",
to_mhi_pm_state_str(mhi_cntrl->pm_state),
mhi_state_str(mhi_cntrl->dev_state));
if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
return 0;
if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
return -EIO;
if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) {
dev_warn(dev, "Resuming from non M3 state (%s)\n",
mhi_state_str(mhi_get_mhi_state(mhi_cntrl)));
if (!force)
return -EINVAL;
}
/* Notify clients about exiting LPM */
list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
mutex_lock(&itr->mutex);
if (itr->mhi_dev)
mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
mutex_unlock(&itr->mutex);
}
write_lock_irq(&mhi_cntrl->pm_lock);
cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
if (cur_state != MHI_PM_M3_EXIT) {
write_unlock_irq(&mhi_cntrl->pm_lock);
dev_info(dev,
"Error setting to PM state: %s from: %s\n",
to_mhi_pm_state_str(MHI_PM_M3_EXIT),
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
/* Set MHI to M0 and wait for completion */
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
write_unlock_irq(&mhi_cntrl->pm_lock);
ret = wait_event_timeout(mhi_cntrl->state_event,
mhi_cntrl->dev_state == MHI_STATE_M0 ||
mhi_cntrl->dev_state == MHI_STATE_M2 ||
MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
msecs_to_jiffies(mhi_cntrl->timeout_ms));
if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
dev_err(dev,
"Did not enter M0 state, MHI state: %s, PM state: %s\n",
mhi_state_str(mhi_cntrl->dev_state),
to_mhi_pm_state_str(mhi_cntrl->pm_state));
return -EIO;
}
return 0;
}
int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
{
return __mhi_pm_resume(mhi_cntrl, false);
}
EXPORT_SYMBOL_GPL(mhi_pm_resume);
int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl)
{
return __mhi_pm_resume(mhi_cntrl, true);
}
EXPORT_SYMBOL_GPL(mhi_pm_resume_force);
int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
{
int ret;
/* Wake up the device */
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
read_unlock_bh(&mhi_cntrl->pm_lock);
return -EIO;
}
mhi_cntrl->wake_get(mhi_cntrl, true);
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
mhi_trigger_resume(mhi_cntrl);
read_unlock_bh(&mhi_cntrl->pm_lock);
ret = wait_event_timeout(mhi_cntrl->state_event,
mhi_cntrl->pm_state == MHI_PM_M0 ||
MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
msecs_to_jiffies(mhi_cntrl->timeout_ms));
if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
read_lock_bh(&mhi_cntrl->pm_lock);
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
return -EIO;
}
return 0;
}
/* Assert device wake db */
static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
{
unsigned long flags;
/*
* If force flag is set, then increment the wake count value and
* ring wake db
*/
if (unlikely(force)) {
spin_lock_irqsave(&mhi_cntrl->wlock, flags);
atomic_inc(&mhi_cntrl->dev_wake);
if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
!mhi_cntrl->wake_set) {
mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
mhi_cntrl->wake_set = true;
}
spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
} else {
/*
* If resources are already requested, then just increment
* the wake count value and return
*/
if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
return;
spin_lock_irqsave(&mhi_cntrl->wlock, flags);
if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
!mhi_cntrl->wake_set) {
mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
mhi_cntrl->wake_set = true;
}
spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
}
}
/* De-assert device wake db */
static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
bool override)
{
unsigned long flags;
/*
* Only continue if there is a single resource, else just decrement
* and return
*/
if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
return;
spin_lock_irqsave(&mhi_cntrl->wlock, flags);
if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
mhi_cntrl->wake_set) {
mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
mhi_cntrl->wake_set = false;
}
spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
}
int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
{
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
enum mhi_state state;
enum mhi_ee_type current_ee;
enum dev_st_transition next_state;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
u32 interval_us = 25000; /* poll register field every 25 milliseconds */
int ret, i;
dev_info(dev, "Requested to power ON\n");
/* Supply default wake routines if not provided by controller driver */
if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
!mhi_cntrl->wake_toggle) {
mhi_cntrl->wake_get = mhi_assert_dev_wake;
mhi_cntrl->wake_put = mhi_deassert_dev_wake;
mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
}
mutex_lock(&mhi_cntrl->pm_mutex);
mhi_cntrl->pm_state = MHI_PM_DISABLE;
/* Setup BHI INTVEC */
write_lock_irq(&mhi_cntrl->pm_lock);
mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
mhi_cntrl->pm_state = MHI_PM_POR;
mhi_cntrl->ee = MHI_EE_MAX;
current_ee = mhi_get_exec_env(mhi_cntrl);
write_unlock_irq(&mhi_cntrl->pm_lock);
/* Confirm that the device is in valid exec env */
if (!MHI_POWER_UP_CAPABLE(current_ee)) {
dev_err(dev, "%s is not a valid EE for power on\n",
TO_MHI_EXEC_STR(current_ee));
ret = -EIO;
goto error_exit;
}
state = mhi_get_mhi_state(mhi_cntrl);
dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n",
TO_MHI_EXEC_STR(current_ee), mhi_state_str(state));
if (state == MHI_STATE_SYS_ERR) {
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
MHICTRL_RESET_MASK, 0, interval_us);
if (ret) {
dev_info(dev, "Failed to reset MHI due to syserr state\n");
goto error_exit;
}
/*
* device cleares INTVEC as part of RESET processing,
* re-program it
*/
mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
}
/* IRQs have been requested during probe, so we just need to enable them. */
enable_irq(mhi_cntrl->irq[0]);
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
enable_irq(mhi_cntrl->irq[mhi_event->irq]);
}
/* Transition to next state */
next_state = MHI_IN_PBL(current_ee) ?
DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
mhi_queue_state_transition(mhi_cntrl, next_state);
mutex_unlock(&mhi_cntrl->pm_mutex);
dev_info(dev, "Power on setup success\n");
return 0;
error_exit:
mhi_cntrl->pm_state = MHI_PM_DISABLE;
mutex_unlock(&mhi_cntrl->pm_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mhi_async_power_up);
void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
{
enum mhi_pm_state cur_state, transition_state;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
mutex_lock(&mhi_cntrl->pm_mutex);
write_lock_irq(&mhi_cntrl->pm_lock);
cur_state = mhi_cntrl->pm_state;
if (cur_state == MHI_PM_DISABLE) {
write_unlock_irq(&mhi_cntrl->pm_lock);
mutex_unlock(&mhi_cntrl->pm_mutex);
return; /* Already powered down */
}
/* If it's not a graceful shutdown, force MHI to linkdown state */
transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS :
MHI_PM_LD_ERR_FATAL_DETECT;
cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
if (cur_state != transition_state) {
dev_err(dev, "Failed to move to state: %s from: %s\n",
to_mhi_pm_state_str(transition_state),
to_mhi_pm_state_str(mhi_cntrl->pm_state));
/* Force link down or error fatal detected state */
mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT;
}
/* mark device inactive to avoid any further host processing */
mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
mhi_cntrl->dev_state = MHI_STATE_RESET;
wake_up_all(&mhi_cntrl->state_event);
write_unlock_irq(&mhi_cntrl->pm_lock);
mutex_unlock(&mhi_cntrl->pm_mutex);
mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE);
/* Wait for shutdown to complete */
flush_work(&mhi_cntrl->st_worker);
disable_irq(mhi_cntrl->irq[0]);
}
EXPORT_SYMBOL_GPL(mhi_power_down);
int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
{
int ret = mhi_async_power_up(mhi_cntrl);
if (ret)
return ret;
wait_event_timeout(mhi_cntrl->state_event,
MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
msecs_to_jiffies(mhi_cntrl->timeout_ms));
ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
if (ret)
mhi_power_down(mhi_cntrl, false);
return ret;
}
EXPORT_SYMBOL(mhi_sync_power_up);
int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
int ret;
/* Check if device is already in RDDM */
if (mhi_cntrl->ee == MHI_EE_RDDM)
return 0;
dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
/* Wait for RDDM event */
ret = wait_event_timeout(mhi_cntrl->state_event,
mhi_cntrl->ee == MHI_EE_RDDM,
msecs_to_jiffies(mhi_cntrl->timeout_ms));
ret = ret ? 0 : -EIO;
return ret;
}
EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
void mhi_device_get(struct mhi_device *mhi_dev)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
mhi_dev->dev_wake++;
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
mhi_trigger_resume(mhi_cntrl);
mhi_cntrl->wake_get(mhi_cntrl, true);
read_unlock_bh(&mhi_cntrl->pm_lock);
}
EXPORT_SYMBOL_GPL(mhi_device_get);
int mhi_device_get_sync(struct mhi_device *mhi_dev)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
int ret;
ret = __mhi_device_get_sync(mhi_cntrl);
if (!ret)
mhi_dev->dev_wake++;
return ret;
}
EXPORT_SYMBOL_GPL(mhi_device_get_sync);
void mhi_device_put(struct mhi_device *mhi_dev)
{
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
mhi_dev->dev_wake--;
read_lock_bh(&mhi_cntrl->pm_lock);
if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
mhi_trigger_resume(mhi_cntrl);
mhi_cntrl->wake_put(mhi_cntrl, false);
read_unlock_bh(&mhi_cntrl->pm_lock);
}
EXPORT_SYMBOL_GPL(mhi_device_put);