linuxdebug/drivers/gpu/ipu-v3/ipu-image-convert.c

2510 lines
69 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2012-2016 Mentor Graphics Inc.
*
* Queued image conversion support, with tiling and rotation.
*/
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <video/imx-ipu-image-convert.h>
#include "ipu-prv.h"
/*
* The IC Resizer has a restriction that the output frame from the
* resizer must be 1024 or less in both width (pixels) and height
* (lines).
*
* The image converter attempts to split up a conversion when
* the desired output (converted) frame resolution exceeds the
* IC resizer limit of 1024 in either dimension.
*
* If either dimension of the output frame exceeds the limit, the
* dimension is split into 1, 2, or 4 equal stripes, for a maximum
* of 4*4 or 16 tiles. A conversion is then carried out for each
* tile (but taking care to pass the full frame stride length to
* the DMA channel's parameter memory!). IDMA double-buffering is used
* to convert each tile back-to-back when possible (see note below
* when double_buffering boolean is set).
*
* Note that the input frame must be split up into the same number
* of tiles as the output frame:
*
* +---------+-----+
* +-----+---+ | A | B |
* | A | B | | | |
* +-----+---+ --> +---------+-----+
* | C | D | | C | D |
* +-----+---+ | | |
* +---------+-----+
*
* Clockwise 90° rotations are handled by first rescaling into a
* reusable temporary tile buffer and then rotating with the 8x8
* block rotator, writing to the correct destination:
*
* +-----+-----+
* | | |
* +-----+---+ +---------+ | C | A |
* | A | B | | A,B, | | | | |
* +-----+---+ --> | C,D | | --> | | |
* | C | D | +---------+ +-----+-----+
* +-----+---+ | D | B |
* | | |
* +-----+-----+
*
* If the 8x8 block rotator is used, horizontal or vertical flipping
* is done during the rotation step, otherwise flipping is done
* during the scaling step.
* With rotation or flipping, tile order changes between input and
* output image. Tiles are numbered row major from top left to bottom
* right for both input and output image.
*/
#define MAX_STRIPES_W 4
#define MAX_STRIPES_H 4
#define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
#define MIN_W 16
#define MIN_H 8
#define MAX_W 4096
#define MAX_H 4096
enum ipu_image_convert_type {
IMAGE_CONVERT_IN = 0,
IMAGE_CONVERT_OUT,
};
struct ipu_image_convert_dma_buf {
void *virt;
dma_addr_t phys;
unsigned long len;
};
struct ipu_image_convert_dma_chan {
int in;
int out;
int rot_in;
int rot_out;
int vdi_in_p;
int vdi_in;
int vdi_in_n;
};
/* dimensions of one tile */
struct ipu_image_tile {
u32 width;
u32 height;
u32 left;
u32 top;
/* size and strides are in bytes */
u32 size;
u32 stride;
u32 rot_stride;
/* start Y or packed offset of this tile */
u32 offset;
/* offset from start to tile in U plane, for planar formats */
u32 u_off;
/* offset from start to tile in V plane, for planar formats */
u32 v_off;
};
struct ipu_image_convert_image {
struct ipu_image base;
enum ipu_image_convert_type type;
const struct ipu_image_pixfmt *fmt;
unsigned int stride;
/* # of rows (horizontal stripes) if dest height is > 1024 */
unsigned int num_rows;
/* # of columns (vertical stripes) if dest width is > 1024 */
unsigned int num_cols;
struct ipu_image_tile tile[MAX_TILES];
};
struct ipu_image_pixfmt {
u32 fourcc; /* V4L2 fourcc */
int bpp; /* total bpp */
int uv_width_dec; /* decimation in width for U/V planes */
int uv_height_dec; /* decimation in height for U/V planes */
bool planar; /* planar format */
bool uv_swapped; /* U and V planes are swapped */
bool uv_packed; /* partial planar (U and V in same plane) */
};
struct ipu_image_convert_ctx;
struct ipu_image_convert_chan;
struct ipu_image_convert_priv;
enum eof_irq_mask {
EOF_IRQ_IN = BIT(0),
EOF_IRQ_ROT_IN = BIT(1),
EOF_IRQ_OUT = BIT(2),
EOF_IRQ_ROT_OUT = BIT(3),
};
#define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
#define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT | \
EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
struct ipu_image_convert_ctx {
struct ipu_image_convert_chan *chan;
ipu_image_convert_cb_t complete;
void *complete_context;
/* Source/destination image data and rotation mode */
struct ipu_image_convert_image in;
struct ipu_image_convert_image out;
struct ipu_ic_csc csc;
enum ipu_rotate_mode rot_mode;
u32 downsize_coeff_h;
u32 downsize_coeff_v;
u32 image_resize_coeff_h;
u32 image_resize_coeff_v;
u32 resize_coeffs_h[MAX_STRIPES_W];
u32 resize_coeffs_v[MAX_STRIPES_H];
/* intermediate buffer for rotation */
struct ipu_image_convert_dma_buf rot_intermediate[2];
/* current buffer number for double buffering */
int cur_buf_num;
bool aborting;
struct completion aborted;
/* can we use double-buffering for this conversion operation? */
bool double_buffering;
/* num_rows * num_cols */
unsigned int num_tiles;
/* next tile to process */
unsigned int next_tile;
/* where to place converted tile in dest image */
unsigned int out_tile_map[MAX_TILES];
/* mask of completed EOF irqs at every tile conversion */
enum eof_irq_mask eof_mask;
struct list_head list;
};
struct ipu_image_convert_chan {
struct ipu_image_convert_priv *priv;
enum ipu_ic_task ic_task;
const struct ipu_image_convert_dma_chan *dma_ch;
struct ipu_ic *ic;
struct ipuv3_channel *in_chan;
struct ipuv3_channel *out_chan;
struct ipuv3_channel *rotation_in_chan;
struct ipuv3_channel *rotation_out_chan;
/* the IPU end-of-frame irqs */
int in_eof_irq;
int rot_in_eof_irq;
int out_eof_irq;
int rot_out_eof_irq;
spinlock_t irqlock;
/* list of convert contexts */
struct list_head ctx_list;
/* queue of conversion runs */
struct list_head pending_q;
/* queue of completed runs */
struct list_head done_q;
/* the current conversion run */
struct ipu_image_convert_run *current_run;
};
struct ipu_image_convert_priv {
struct ipu_image_convert_chan chan[IC_NUM_TASKS];
struct ipu_soc *ipu;
};
static const struct ipu_image_convert_dma_chan
image_convert_dma_chan[IC_NUM_TASKS] = {
[IC_TASK_VIEWFINDER] = {
.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
},
[IC_TASK_POST_PROCESSOR] = {
.in = IPUV3_CHANNEL_MEM_IC_PP,
.out = IPUV3_CHANNEL_IC_PP_MEM,
.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
},
};
static const struct ipu_image_pixfmt image_convert_formats[] = {
{
.fourcc = V4L2_PIX_FMT_RGB565,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB24,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_BGR24,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_RGB32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_BGR32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_XRGB32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_XBGR32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_BGRX32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_RGBX32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.bpp = 16,
.uv_width_dec = 2,
.uv_height_dec = 1,
}, {
.fourcc = V4L2_PIX_FMT_UYVY,
.bpp = 16,
.uv_width_dec = 2,
.uv_height_dec = 1,
}, {
.fourcc = V4L2_PIX_FMT_YUV420,
.bpp = 12,
.planar = true,
.uv_width_dec = 2,
.uv_height_dec = 2,
}, {
.fourcc = V4L2_PIX_FMT_YVU420,
.bpp = 12,
.planar = true,
.uv_width_dec = 2,
.uv_height_dec = 2,
.uv_swapped = true,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.bpp = 12,
.planar = true,
.uv_width_dec = 2,
.uv_height_dec = 2,
.uv_packed = true,
}, {
.fourcc = V4L2_PIX_FMT_YUV422P,
.bpp = 16,
.planar = true,
.uv_width_dec = 2,
.uv_height_dec = 1,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.bpp = 16,
.planar = true,
.uv_width_dec = 2,
.uv_height_dec = 1,
.uv_packed = true,
},
};
static const struct ipu_image_pixfmt *get_format(u32 fourcc)
{
const struct ipu_image_pixfmt *ret = NULL;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
if (image_convert_formats[i].fourcc == fourcc) {
ret = &image_convert_formats[i];
break;
}
}
return ret;
}
static void dump_format(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *ic_image)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
dev_dbg(priv->ipu->dev,
"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
chan->ic_task, ctx,
ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
ic_image->base.pix.width, ic_image->base.pix.height,
ic_image->num_cols, ic_image->num_rows,
ic_image->fmt->fourcc & 0xff,
(ic_image->fmt->fourcc >> 8) & 0xff,
(ic_image->fmt->fourcc >> 16) & 0xff,
(ic_image->fmt->fourcc >> 24) & 0xff);
}
int ipu_image_convert_enum_format(int index, u32 *fourcc)
{
const struct ipu_image_pixfmt *fmt;
if (index >= (int)ARRAY_SIZE(image_convert_formats))
return -EINVAL;
/* Format found */
fmt = &image_convert_formats[index];
*fourcc = fmt->fourcc;
return 0;
}
EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
static void free_dma_buf(struct ipu_image_convert_priv *priv,
struct ipu_image_convert_dma_buf *buf)
{
if (buf->virt)
dma_free_coherent(priv->ipu->dev,
buf->len, buf->virt, buf->phys);
buf->virt = NULL;
buf->phys = 0;
}
static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
struct ipu_image_convert_dma_buf *buf,
int size)
{
buf->len = PAGE_ALIGN(size);
buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
GFP_DMA | GFP_KERNEL);
if (!buf->virt) {
dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
return -ENOMEM;
}
return 0;
}
static inline int num_stripes(int dim)
{
return (dim - 1) / 1024 + 1;
}
/*
* Calculate downsizing coefficients, which are the same for all tiles,
* and initial bilinear resizing coefficients, which are used to find the
* best seam positions.
* Also determine the number of tiles necessary to guarantee that no tile
* is larger than 1024 pixels in either dimension at the output and between
* IC downsizing and main processing sections.
*/
static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
struct ipu_image *in,
struct ipu_image *out)
{
u32 downsized_width = in->rect.width;
u32 downsized_height = in->rect.height;
u32 downsize_coeff_v = 0;
u32 downsize_coeff_h = 0;
u32 resized_width = out->rect.width;
u32 resized_height = out->rect.height;
u32 resize_coeff_h;
u32 resize_coeff_v;
u32 cols;
u32 rows;
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
resized_width = out->rect.height;
resized_height = out->rect.width;
}
/* Do not let invalid input lead to an endless loop below */
if (WARN_ON(resized_width == 0 || resized_height == 0))
return -EINVAL;
while (downsized_width >= resized_width * 2) {
downsized_width >>= 1;
downsize_coeff_h++;
}
while (downsized_height >= resized_height * 2) {
downsized_height >>= 1;
downsize_coeff_v++;
}
/*
* Calculate the bilinear resizing coefficients that could be used if
* we were converting with a single tile. The bottom right output pixel
* should sample as close as possible to the bottom right input pixel
* out of the decimator, but not overshoot it:
*/
resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
/*
* Both the output of the IC downsizing section before being passed to
* the IC main processing section and the final output of the IC main
* processing section must be <= 1024 pixels in both dimensions.
*/
cols = num_stripes(max_t(u32, downsized_width, resized_width));
rows = num_stripes(max_t(u32, downsized_height, resized_height));
dev_dbg(ctx->chan->priv->ipu->dev,
"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
resize_coeff_v, cols, rows);
if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
return -EINVAL;
ctx->downsize_coeff_h = downsize_coeff_h;
ctx->downsize_coeff_v = downsize_coeff_v;
ctx->image_resize_coeff_h = resize_coeff_h;
ctx->image_resize_coeff_v = resize_coeff_v;
ctx->in.num_cols = cols;
ctx->in.num_rows = rows;
return 0;
}
#define round_closest(x, y) round_down((x) + (y)/2, (y))
/*
* Find the best aligned seam position for the given column / row index.
* Rotation and image offsets are out of scope.
*
* @index: column / row index, used to calculate valid interval
* @in_edge: input right / bottom edge
* @out_edge: output right / bottom edge
* @in_align: input alignment, either horizontal 8-byte line start address
* alignment, or pixel alignment due to image format
* @out_align: output alignment, either horizontal 8-byte line start address
* alignment, or pixel alignment due to image format or rotator
* block size
* @in_burst: horizontal input burst size in case of horizontal flip
* @out_burst: horizontal output burst size or rotator block size
* @downsize_coeff: downsizing section coefficient
* @resize_coeff: main processing section resizing coefficient
* @_in_seam: aligned input seam position return value
* @_out_seam: aligned output seam position return value
*/
static void find_best_seam(struct ipu_image_convert_ctx *ctx,
unsigned int index,
unsigned int in_edge,
unsigned int out_edge,
unsigned int in_align,
unsigned int out_align,
unsigned int in_burst,
unsigned int out_burst,
unsigned int downsize_coeff,
unsigned int resize_coeff,
u32 *_in_seam,
u32 *_out_seam)
{
struct device *dev = ctx->chan->priv->ipu->dev;
unsigned int out_pos;
/* Input / output seam position candidates */
unsigned int out_seam = 0;
unsigned int in_seam = 0;
unsigned int min_diff = UINT_MAX;
unsigned int out_start;
unsigned int out_end;
unsigned int in_start;
unsigned int in_end;
/* Start within 1024 pixels of the right / bottom edge */
out_start = max_t(int, index * out_align, out_edge - 1024);
/* End before having to add more columns to the left / rows above */
out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
/*
* Limit input seam position to make sure that the downsized input tile
* to the right or bottom does not exceed 1024 pixels.
*/
in_start = max_t(int, index * in_align,
in_edge - (1024 << downsize_coeff));
in_end = min_t(unsigned int, in_edge,
index * (1024 << downsize_coeff) + 1);
/*
* Output tiles must start at a multiple of 8 bytes horizontally and
* possibly at an even line horizontally depending on the pixel format.
* Only consider output aligned positions for the seam.
*/
out_start = round_up(out_start, out_align);
for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
unsigned int in_pos;
unsigned int in_pos_aligned;
unsigned int in_pos_rounded;
unsigned int abs_diff;
/*
* Tiles in the right row / bottom column may not be allowed to
* overshoot horizontally / vertically. out_burst may be the
* actual DMA burst size, or the rotator block size.
*/
if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
continue;
/*
* Input sample position, corresponding to out_pos, 19.13 fixed
* point.
*/
in_pos = (out_pos * resize_coeff) << downsize_coeff;
/*
* The closest input sample position that we could actually
* start the input tile at, 19.13 fixed point.
*/
in_pos_aligned = round_closest(in_pos, 8192U * in_align);
/* Convert 19.13 fixed point to integer */
in_pos_rounded = in_pos_aligned / 8192U;
if (in_pos_rounded < in_start)
continue;
if (in_pos_rounded >= in_end)
break;
if ((in_burst > 1) &&
(in_edge - in_pos_rounded) % in_burst)
continue;
if (in_pos < in_pos_aligned)
abs_diff = in_pos_aligned - in_pos;
else
abs_diff = in_pos - in_pos_aligned;
if (abs_diff < min_diff) {
in_seam = in_pos_rounded;
out_seam = out_pos;
min_diff = abs_diff;
}
}
*_out_seam = out_seam;
*_in_seam = in_seam;
dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
__func__, out_seam, out_align, out_start, out_end,
in_seam, in_align, in_start, in_end, min_diff / 8192,
DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
}
/*
* Tile left edges are required to be aligned to multiples of 8 bytes
* by the IDMAC.
*/
static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
{
if (fmt->planar)
return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
else
return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
}
/*
* Tile top edge alignment is only limited by chroma subsampling.
*/
static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
{
return fmt->uv_height_dec > 1 ? 2 : 1;
}
static inline u32 tile_width_align(enum ipu_image_convert_type type,
const struct ipu_image_pixfmt *fmt,
enum ipu_rotate_mode rot_mode)
{
if (type == IMAGE_CONVERT_IN) {
/*
* The IC burst reads 8 pixels at a time. Reading beyond the
* end of the line is usually acceptable. Those pixels are
* ignored, unless the IC has to write the scaled line in
* reverse.
*/
return (!ipu_rot_mode_is_irt(rot_mode) &&
(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
}
/*
* Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
* formats to guarantee 8-byte aligned line start addresses in the
* chroma planes when IRT is used. Align to 8x8 pixel IRT block size
* for all other formats.
*/
return (ipu_rot_mode_is_irt(rot_mode) &&
fmt->planar && !fmt->uv_packed) ?
8 * fmt->uv_width_dec : 8;
}
static inline u32 tile_height_align(enum ipu_image_convert_type type,
const struct ipu_image_pixfmt *fmt,
enum ipu_rotate_mode rot_mode)
{
if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
return 2;
/*
* Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
* formats to guarantee 8-byte aligned line start addresses in the
* chroma planes when IRT is used. Align to 8x8 pixel IRT block size
* for all other formats.
*/
return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
}
/*
* Fill in left position and width and for all tiles in an input column, and
* for all corresponding output tiles. If the 90° rotator is used, the output
* tiles are in a row, and output tile top position and height are set.
*/
static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
unsigned int col,
struct ipu_image_convert_image *in,
unsigned int in_left, unsigned int in_width,
struct ipu_image_convert_image *out,
unsigned int out_left, unsigned int out_width)
{
unsigned int row, tile_idx;
struct ipu_image_tile *in_tile, *out_tile;
for (row = 0; row < in->num_rows; row++) {
tile_idx = in->num_cols * row + col;
in_tile = &in->tile[tile_idx];
out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
in_tile->left = in_left;
in_tile->width = in_width;
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
out_tile->top = out_left;
out_tile->height = out_width;
} else {
out_tile->left = out_left;
out_tile->width = out_width;
}
}
}
/*
* Fill in top position and height and for all tiles in an input row, and
* for all corresponding output tiles. If the 90° rotator is used, the output
* tiles are in a column, and output tile left position and width are set.
*/
static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
struct ipu_image_convert_image *in,
unsigned int in_top, unsigned int in_height,
struct ipu_image_convert_image *out,
unsigned int out_top, unsigned int out_height)
{
unsigned int col, tile_idx;
struct ipu_image_tile *in_tile, *out_tile;
for (col = 0; col < in->num_cols; col++) {
tile_idx = in->num_cols * row + col;
in_tile = &in->tile[tile_idx];
out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
in_tile->top = in_top;
in_tile->height = in_height;
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
out_tile->left = out_top;
out_tile->width = out_height;
} else {
out_tile->top = out_top;
out_tile->height = out_height;
}
}
}
/*
* Find the best horizontal and vertical seam positions to split into tiles.
* Minimize the fractional part of the input sampling position for the
* top / left pixels of each tile.
*/
static void find_seams(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *in,
struct ipu_image_convert_image *out)
{
struct device *dev = ctx->chan->priv->ipu->dev;
unsigned int resized_width = out->base.rect.width;
unsigned int resized_height = out->base.rect.height;
unsigned int col;
unsigned int row;
unsigned int in_left_align = tile_left_align(in->fmt);
unsigned int in_top_align = tile_top_align(in->fmt);
unsigned int out_left_align = tile_left_align(out->fmt);
unsigned int out_top_align = tile_top_align(out->fmt);
unsigned int out_width_align = tile_width_align(out->type, out->fmt,
ctx->rot_mode);
unsigned int out_height_align = tile_height_align(out->type, out->fmt,
ctx->rot_mode);
unsigned int in_right = in->base.rect.width;
unsigned int in_bottom = in->base.rect.height;
unsigned int out_right = out->base.rect.width;
unsigned int out_bottom = out->base.rect.height;
unsigned int flipped_out_left;
unsigned int flipped_out_top;
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
/* Switch width/height and align top left to IRT block size */
resized_width = out->base.rect.height;
resized_height = out->base.rect.width;
out_left_align = out_height_align;
out_top_align = out_width_align;
out_width_align = out_left_align;
out_height_align = out_top_align;
out_right = out->base.rect.height;
out_bottom = out->base.rect.width;
}
for (col = in->num_cols - 1; col > 0; col--) {
bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
bool allow_out_overshoot = (col < in->num_cols - 1) &&
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
unsigned int in_left;
unsigned int out_left;
/*
* Align input width to burst length if the scaling step flips
* horizontally.
*/
find_best_seam(ctx, col,
in_right, out_right,
in_left_align, out_left_align,
allow_in_overshoot ? 1 : 8 /* burst length */,
allow_out_overshoot ? 1 : out_width_align,
ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
&in_left, &out_left);
if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
flipped_out_left = resized_width - out_right;
else
flipped_out_left = out_left;
fill_tile_column(ctx, col, in, in_left, in_right - in_left,
out, flipped_out_left, out_right - out_left);
dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
in_left, in_right - in_left,
flipped_out_left, out_right - out_left);
in_right = in_left;
out_right = out_left;
}
flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
resized_width - out_right : 0;
fill_tile_column(ctx, 0, in, 0, in_right,
out, flipped_out_left, out_right);
dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
in_right, flipped_out_left, out_right);
for (row = in->num_rows - 1; row > 0; row--) {
bool allow_overshoot = row < in->num_rows - 1;
unsigned int in_top;
unsigned int out_top;
find_best_seam(ctx, row,
in_bottom, out_bottom,
in_top_align, out_top_align,
1, allow_overshoot ? 1 : out_height_align,
ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
&in_top, &out_top);
if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
ipu_rot_mode_is_irt(ctx->rot_mode))
flipped_out_top = resized_height - out_bottom;
else
flipped_out_top = out_top;
fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
out, flipped_out_top, out_bottom - out_top);
dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
in_top, in_bottom - in_top,
flipped_out_top, out_bottom - out_top);
in_bottom = in_top;
out_bottom = out_top;
}
if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
ipu_rot_mode_is_irt(ctx->rot_mode))
flipped_out_top = resized_height - out_bottom;
else
flipped_out_top = 0;
fill_tile_row(ctx, 0, in, 0, in_bottom,
out, flipped_out_top, out_bottom);
dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
in_bottom, flipped_out_top, out_bottom);
}
static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *image)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
unsigned int max_width = 1024;
unsigned int max_height = 1024;
unsigned int i;
if (image->type == IMAGE_CONVERT_IN) {
/* Up to 4096x4096 input tile size */
max_width <<= ctx->downsize_coeff_h;
max_height <<= ctx->downsize_coeff_v;
}
for (i = 0; i < ctx->num_tiles; i++) {
struct ipu_image_tile *tile;
const unsigned int row = i / image->num_cols;
const unsigned int col = i % image->num_cols;
if (image->type == IMAGE_CONVERT_OUT)
tile = &image->tile[ctx->out_tile_map[i]];
else
tile = &image->tile[i];
tile->size = ((tile->height * image->fmt->bpp) >> 3) *
tile->width;
if (image->fmt->planar) {
tile->stride = tile->width;
tile->rot_stride = tile->height;
} else {
tile->stride =
(image->fmt->bpp * tile->width) >> 3;
tile->rot_stride =
(image->fmt->bpp * tile->height) >> 3;
}
dev_dbg(priv->ipu->dev,
"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
chan->ic_task, ctx,
image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
row, col,
tile->width, tile->height, tile->left, tile->top);
if (!tile->width || tile->width > max_width ||
!tile->height || tile->height > max_height) {
dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
image->type == IMAGE_CONVERT_IN ? "input" :
"output", tile->width, tile->height);
return -EINVAL;
}
}
return 0;
}
/*
* Use the rotation transformation to find the tile coordinates
* (row, col) of a tile in the destination frame that corresponds
* to the given tile coordinates of a source frame. The destination
* coordinate is then converted to a tile index.
*/
static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
int src_row, int src_col)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_image *s_image = &ctx->in;
struct ipu_image_convert_image *d_image = &ctx->out;
int dst_row, dst_col;
/* with no rotation it's a 1:1 mapping */
if (ctx->rot_mode == IPU_ROTATE_NONE)
return src_row * s_image->num_cols + src_col;
/*
* before doing the transform, first we have to translate
* source row,col for an origin in the center of s_image
*/
src_row = src_row * 2 - (s_image->num_rows - 1);
src_col = src_col * 2 - (s_image->num_cols - 1);
/* do the rotation transform */
if (ctx->rot_mode & IPU_ROT_BIT_90) {
dst_col = -src_row;
dst_row = src_col;
} else {
dst_col = src_col;
dst_row = src_row;
}
/* apply flip */
if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
dst_col = -dst_col;
if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
dst_row = -dst_row;
dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
/*
* finally translate dest row,col using an origin in upper
* left of d_image
*/
dst_row += d_image->num_rows - 1;
dst_col += d_image->num_cols - 1;
dst_row /= 2;
dst_col /= 2;
return dst_row * d_image->num_cols + dst_col;
}
/*
* Fill the out_tile_map[] with transformed destination tile indeces.
*/
static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
{
struct ipu_image_convert_image *s_image = &ctx->in;
unsigned int row, col, tile = 0;
for (row = 0; row < s_image->num_rows; row++) {
for (col = 0; col < s_image->num_cols; col++) {
ctx->out_tile_map[tile] =
transform_tile_index(ctx, row, col);
tile++;
}
}
}
static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *image)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
const struct ipu_image_pixfmt *fmt = image->fmt;
unsigned int row, col, tile = 0;
u32 H, top, y_stride, uv_stride;
u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
u32 y_row_off, y_col_off, y_off;
u32 y_size, uv_size;
/* setup some convenience vars */
H = image->base.pix.height;
y_stride = image->stride;
uv_stride = y_stride / fmt->uv_width_dec;
if (fmt->uv_packed)
uv_stride *= 2;
y_size = H * y_stride;
uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
for (row = 0; row < image->num_rows; row++) {
top = image->tile[tile].top;
y_row_off = top * y_stride;
uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
for (col = 0; col < image->num_cols; col++) {
y_col_off = image->tile[tile].left;
uv_col_off = y_col_off / fmt->uv_width_dec;
if (fmt->uv_packed)
uv_col_off *= 2;
y_off = y_row_off + y_col_off;
uv_off = uv_row_off + uv_col_off;
u_off = y_size - y_off + uv_off;
v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
if (fmt->uv_swapped)
swap(u_off, v_off);
image->tile[tile].offset = y_off;
image->tile[tile].u_off = u_off;
image->tile[tile++].v_off = v_off;
if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
dev_err(priv->ipu->dev,
"task %u: ctx %p: %s@[%d,%d]: "
"y_off %08x, u_off %08x, v_off %08x\n",
chan->ic_task, ctx,
image->type == IMAGE_CONVERT_IN ?
"Input" : "Output", row, col,
y_off, u_off, v_off);
return -EINVAL;
}
}
}
return 0;
}
static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *image)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
const struct ipu_image_pixfmt *fmt = image->fmt;
unsigned int row, col, tile = 0;
u32 bpp, stride, offset;
u32 row_off, col_off;
/* setup some convenience vars */
stride = image->stride;
bpp = fmt->bpp;
for (row = 0; row < image->num_rows; row++) {
row_off = image->tile[tile].top * stride;
for (col = 0; col < image->num_cols; col++) {
col_off = (image->tile[tile].left * bpp) >> 3;
offset = row_off + col_off;
image->tile[tile].offset = offset;
image->tile[tile].u_off = 0;
image->tile[tile++].v_off = 0;
if (offset & 0x7) {
dev_err(priv->ipu->dev,
"task %u: ctx %p: %s@[%d,%d]: "
"phys %08x\n",
chan->ic_task, ctx,
image->type == IMAGE_CONVERT_IN ?
"Input" : "Output", row, col,
row_off + col_off);
return -EINVAL;
}
}
}
return 0;
}
static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *image)
{
if (image->fmt->planar)
return calc_tile_offsets_planar(ctx, image);
return calc_tile_offsets_packed(ctx, image);
}
/*
* Calculate the resizing ratio for the IC main processing section given input
* size, fixed downsizing coefficient, and output size.
* Either round to closest for the next tile's first pixel to minimize seams
* and distortion (for all but right column / bottom row), or round down to
* avoid sampling beyond the edges of the input image for this tile's last
* pixel.
* Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
*/
static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
u32 output_size, bool allow_overshoot)
{
u32 downsized = input_size >> downsize_coeff;
if (allow_overshoot)
return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
else
return 8192 * (downsized - 1) / (output_size - 1);
}
/*
* Slightly modify resize coefficients per tile to hide the bilinear
* interpolator reset at tile borders, shifting the right / bottom edge
* by up to a half input pixel. This removes noticeable seams between
* tiles at higher upscaling factors.
*/
static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_tile *in_tile, *out_tile;
unsigned int col, row, tile_idx;
unsigned int last_output;
for (col = 0; col < ctx->in.num_cols; col++) {
bool closest = (col < ctx->in.num_cols - 1) &&
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
u32 resized_width;
u32 resize_coeff_h;
u32 in_width;
tile_idx = col;
in_tile = &ctx->in.tile[tile_idx];
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
if (ipu_rot_mode_is_irt(ctx->rot_mode))
resized_width = out_tile->height;
else
resized_width = out_tile->width;
resize_coeff_h = calc_resize_coeff(in_tile->width,
ctx->downsize_coeff_h,
resized_width, closest);
dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
__func__, col, resize_coeff_h);
/*
* With the horizontal scaling factor known, round up resized
* width (output width or height) to burst size.
*/
resized_width = round_up(resized_width, 8);
/*
* Calculate input width from the last accessed input pixel
* given resized width and scaling coefficients. Round up to
* burst size.
*/
last_output = resized_width - 1;
if (closest && ((last_output * resize_coeff_h) % 8192))
last_output++;
in_width = round_up(
(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
<< ctx->downsize_coeff_h, 8);
for (row = 0; row < ctx->in.num_rows; row++) {
tile_idx = row * ctx->in.num_cols + col;
in_tile = &ctx->in.tile[tile_idx];
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
if (ipu_rot_mode_is_irt(ctx->rot_mode))
out_tile->height = resized_width;
else
out_tile->width = resized_width;
in_tile->width = in_width;
}
ctx->resize_coeffs_h[col] = resize_coeff_h;
}
for (row = 0; row < ctx->in.num_rows; row++) {
bool closest = (row < ctx->in.num_rows - 1) &&
!(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
u32 resized_height;
u32 resize_coeff_v;
u32 in_height;
tile_idx = row * ctx->in.num_cols;
in_tile = &ctx->in.tile[tile_idx];
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
if (ipu_rot_mode_is_irt(ctx->rot_mode))
resized_height = out_tile->width;
else
resized_height = out_tile->height;
resize_coeff_v = calc_resize_coeff(in_tile->height,
ctx->downsize_coeff_v,
resized_height, closest);
dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
__func__, row, resize_coeff_v);
/*
* With the vertical scaling factor known, round up resized
* height (output width or height) to IDMAC limitations.
*/
resized_height = round_up(resized_height, 2);
/*
* Calculate input width from the last accessed input pixel
* given resized height and scaling coefficients. Align to
* IDMAC restrictions.
*/
last_output = resized_height - 1;
if (closest && ((last_output * resize_coeff_v) % 8192))
last_output++;
in_height = round_up(
(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
<< ctx->downsize_coeff_v, 2);
for (col = 0; col < ctx->in.num_cols; col++) {
tile_idx = row * ctx->in.num_cols + col;
in_tile = &ctx->in.tile[tile_idx];
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
if (ipu_rot_mode_is_irt(ctx->rot_mode))
out_tile->width = resized_height;
else
out_tile->height = resized_height;
in_tile->height = in_height;
}
ctx->resize_coeffs_v[row] = resize_coeff_v;
}
}
/*
* return the number of runs in given queue (pending_q or done_q)
* for this context. hold irqlock when calling.
*/
static int get_run_count(struct ipu_image_convert_ctx *ctx,
struct list_head *q)
{
struct ipu_image_convert_run *run;
int count = 0;
lockdep_assert_held(&ctx->chan->irqlock);
list_for_each_entry(run, q, list) {
if (run->ctx == ctx)
count++;
}
return count;
}
static void convert_stop(struct ipu_image_convert_run *run)
{
struct ipu_image_convert_ctx *ctx = run->ctx;
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
__func__, chan->ic_task, ctx, run);
/* disable IC tasks and the channels */
ipu_ic_task_disable(chan->ic);
ipu_idmac_disable_channel(chan->in_chan);
ipu_idmac_disable_channel(chan->out_chan);
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
ipu_idmac_disable_channel(chan->rotation_in_chan);
ipu_idmac_disable_channel(chan->rotation_out_chan);
ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
}
ipu_ic_disable(chan->ic);
}
static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
struct ipuv3_channel *channel,
struct ipu_image_convert_image *image,
enum ipu_rotate_mode rot_mode,
bool rot_swap_width_height,
unsigned int tile)
{
struct ipu_image_convert_chan *chan = ctx->chan;
unsigned int burst_size;
u32 width, height, stride;
dma_addr_t addr0, addr1 = 0;
struct ipu_image tile_image;
unsigned int tile_idx[2];
if (image->type == IMAGE_CONVERT_OUT) {
tile_idx[0] = ctx->out_tile_map[tile];
tile_idx[1] = ctx->out_tile_map[1];
} else {
tile_idx[0] = tile;
tile_idx[1] = 1;
}
if (rot_swap_width_height) {
width = image->tile[tile_idx[0]].height;
height = image->tile[tile_idx[0]].width;
stride = image->tile[tile_idx[0]].rot_stride;
addr0 = ctx->rot_intermediate[0].phys;
if (ctx->double_buffering)
addr1 = ctx->rot_intermediate[1].phys;
} else {
width = image->tile[tile_idx[0]].width;
height = image->tile[tile_idx[0]].height;
stride = image->stride;
addr0 = image->base.phys0 +
image->tile[tile_idx[0]].offset;
if (ctx->double_buffering)
addr1 = image->base.phys0 +
image->tile[tile_idx[1]].offset;
}
ipu_cpmem_zero(channel);
memset(&tile_image, 0, sizeof(tile_image));
tile_image.pix.width = tile_image.rect.width = width;
tile_image.pix.height = tile_image.rect.height = height;
tile_image.pix.bytesperline = stride;
tile_image.pix.pixelformat = image->fmt->fourcc;
tile_image.phys0 = addr0;
tile_image.phys1 = addr1;
if (image->fmt->planar && !rot_swap_width_height) {
tile_image.u_offset = image->tile[tile_idx[0]].u_off;
tile_image.v_offset = image->tile[tile_idx[0]].v_off;
}
ipu_cpmem_set_image(channel, &tile_image);
if (rot_mode)
ipu_cpmem_set_rotation(channel, rot_mode);
/*
* Skip writing U and V components to odd rows in the output
* channels for planar 4:2:0.
*/
if ((channel == chan->out_chan ||
channel == chan->rotation_out_chan) &&
image->fmt->planar && image->fmt->uv_height_dec == 2)
ipu_cpmem_skip_odd_chroma_rows(channel);
if (channel == chan->rotation_in_chan ||
channel == chan->rotation_out_chan) {
burst_size = 8;
ipu_cpmem_set_block_mode(channel);
} else
burst_size = (width % 16) ? 8 : 16;
ipu_cpmem_set_burstsize(channel, burst_size);
ipu_ic_task_idma_init(chan->ic, channel, width, height,
burst_size, rot_mode);
/*
* Setting a non-zero AXI ID collides with the PRG AXI snooping, so
* only do this when there is no PRG present.
*/
if (!channel->ipu->prg_priv)
ipu_cpmem_set_axi_id(channel, 1);
ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
}
static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
{
struct ipu_image_convert_ctx *ctx = run->ctx;
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_image *s_image = &ctx->in;
struct ipu_image_convert_image *d_image = &ctx->out;
unsigned int dst_tile = ctx->out_tile_map[tile];
unsigned int dest_width, dest_height;
unsigned int col, row;
u32 rsc;
int ret;
dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
__func__, chan->ic_task, ctx, run, tile, dst_tile);
/* clear EOF irq mask */
ctx->eof_mask = 0;
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
/* swap width/height for resizer */
dest_width = d_image->tile[dst_tile].height;
dest_height = d_image->tile[dst_tile].width;
} else {
dest_width = d_image->tile[dst_tile].width;
dest_height = d_image->tile[dst_tile].height;
}
row = tile / s_image->num_cols;
col = tile % s_image->num_cols;
rsc = (ctx->downsize_coeff_v << 30) |
(ctx->resize_coeffs_v[row] << 16) |
(ctx->downsize_coeff_h << 14) |
(ctx->resize_coeffs_h[col]);
dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
__func__, s_image->tile[tile].width,
s_image->tile[tile].height, dest_width, dest_height, rsc);
/* setup the IC resizer and CSC */
ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
s_image->tile[tile].width,
s_image->tile[tile].height,
dest_width,
dest_height,
rsc);
if (ret) {
dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
return ret;
}
/* init the source MEM-->IC PP IDMAC channel */
init_idmac_channel(ctx, chan->in_chan, s_image,
IPU_ROTATE_NONE, false, tile);
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
/* init the IC PP-->MEM IDMAC channel */
init_idmac_channel(ctx, chan->out_chan, d_image,
IPU_ROTATE_NONE, true, tile);
/* init the MEM-->IC PP ROT IDMAC channel */
init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
ctx->rot_mode, true, tile);
/* init the destination IC PP ROT-->MEM IDMAC channel */
init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
IPU_ROTATE_NONE, false, tile);
/* now link IC PP-->MEM to MEM-->IC PP ROT */
ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
} else {
/* init the destination IC PP-->MEM IDMAC channel */
init_idmac_channel(ctx, chan->out_chan, d_image,
ctx->rot_mode, false, tile);
}
/* enable the IC */
ipu_ic_enable(chan->ic);
/* set buffers ready */
ipu_idmac_select_buffer(chan->in_chan, 0);
ipu_idmac_select_buffer(chan->out_chan, 0);
if (ipu_rot_mode_is_irt(ctx->rot_mode))
ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
if (ctx->double_buffering) {
ipu_idmac_select_buffer(chan->in_chan, 1);
ipu_idmac_select_buffer(chan->out_chan, 1);
if (ipu_rot_mode_is_irt(ctx->rot_mode))
ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
}
/* enable the channels! */
ipu_idmac_enable_channel(chan->in_chan);
ipu_idmac_enable_channel(chan->out_chan);
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
ipu_idmac_enable_channel(chan->rotation_in_chan);
ipu_idmac_enable_channel(chan->rotation_out_chan);
}
ipu_ic_task_enable(chan->ic);
ipu_cpmem_dump(chan->in_chan);
ipu_cpmem_dump(chan->out_chan);
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
ipu_cpmem_dump(chan->rotation_in_chan);
ipu_cpmem_dump(chan->rotation_out_chan);
}
ipu_dump(priv->ipu);
return 0;
}
/* hold irqlock when calling */
static int do_run(struct ipu_image_convert_run *run)
{
struct ipu_image_convert_ctx *ctx = run->ctx;
struct ipu_image_convert_chan *chan = ctx->chan;
lockdep_assert_held(&chan->irqlock);
ctx->in.base.phys0 = run->in_phys;
ctx->out.base.phys0 = run->out_phys;
ctx->cur_buf_num = 0;
ctx->next_tile = 1;
/* remove run from pending_q and set as current */
list_del(&run->list);
chan->current_run = run;
return convert_start(run, 0);
}
/* hold irqlock when calling */
static void run_next(struct ipu_image_convert_chan *chan)
{
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_run *run, *tmp;
int ret;
lockdep_assert_held(&chan->irqlock);
list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
/* skip contexts that are aborting */
if (run->ctx->aborting) {
dev_dbg(priv->ipu->dev,
"%s: task %u: skipping aborting ctx %p run %p\n",
__func__, chan->ic_task, run->ctx, run);
continue;
}
ret = do_run(run);
if (!ret)
break;
/*
* something went wrong with start, add the run
* to done q and continue to the next run in the
* pending q.
*/
run->status = ret;
list_add_tail(&run->list, &chan->done_q);
chan->current_run = NULL;
}
}
static void empty_done_q(struct ipu_image_convert_chan *chan)
{
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_run *run;
unsigned long flags;
spin_lock_irqsave(&chan->irqlock, flags);
while (!list_empty(&chan->done_q)) {
run = list_entry(chan->done_q.next,
struct ipu_image_convert_run,
list);
list_del(&run->list);
dev_dbg(priv->ipu->dev,
"%s: task %u: completing ctx %p run %p with %d\n",
__func__, chan->ic_task, run->ctx, run, run->status);
/* call the completion callback and free the run */
spin_unlock_irqrestore(&chan->irqlock, flags);
run->ctx->complete(run, run->ctx->complete_context);
spin_lock_irqsave(&chan->irqlock, flags);
}
spin_unlock_irqrestore(&chan->irqlock, flags);
}
/*
* the bottom half thread clears out the done_q, calling the
* completion handler for each.
*/
static irqreturn_t do_bh(int irq, void *dev_id)
{
struct ipu_image_convert_chan *chan = dev_id;
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_ctx *ctx;
unsigned long flags;
dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
chan->ic_task);
empty_done_q(chan);
spin_lock_irqsave(&chan->irqlock, flags);
/*
* the done_q is cleared out, signal any contexts
* that are aborting that abort can complete.
*/
list_for_each_entry(ctx, &chan->ctx_list, list) {
if (ctx->aborting) {
dev_dbg(priv->ipu->dev,
"%s: task %u: signaling abort for ctx %p\n",
__func__, chan->ic_task, ctx);
complete_all(&ctx->aborted);
}
}
spin_unlock_irqrestore(&chan->irqlock, flags);
dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
chan->ic_task);
return IRQ_HANDLED;
}
static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
{
unsigned int cur_tile = ctx->next_tile - 1;
unsigned int next_tile = ctx->next_tile;
if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
return true;
return false;
}
/* hold irqlock when calling */
static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
{
struct ipu_image_convert_ctx *ctx = run->ctx;
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_tile *src_tile, *dst_tile;
struct ipu_image_convert_image *s_image = &ctx->in;
struct ipu_image_convert_image *d_image = &ctx->out;
struct ipuv3_channel *outch;
unsigned int dst_idx;
lockdep_assert_held(&chan->irqlock);
outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
chan->rotation_out_chan : chan->out_chan;
/*
* It is difficult to stop the channel DMA before the channels
* enter the paused state. Without double-buffering the channels
* are always in a paused state when the EOF irq occurs, so it
* is safe to stop the channels now. For double-buffering we
* just ignore the abort until the operation completes, when it
* is safe to shut down.
*/
if (ctx->aborting && !ctx->double_buffering) {
convert_stop(run);
run->status = -EIO;
goto done;
}
if (ctx->next_tile == ctx->num_tiles) {
/*
* the conversion is complete
*/
convert_stop(run);
run->status = 0;
goto done;
}
/*
* not done, place the next tile buffers.
*/
if (!ctx->double_buffering) {
if (ic_settings_changed(ctx)) {
convert_stop(run);
convert_start(run, ctx->next_tile);
} else {
src_tile = &s_image->tile[ctx->next_tile];
dst_idx = ctx->out_tile_map[ctx->next_tile];
dst_tile = &d_image->tile[dst_idx];
ipu_cpmem_set_buffer(chan->in_chan, 0,
s_image->base.phys0 +
src_tile->offset);
ipu_cpmem_set_buffer(outch, 0,
d_image->base.phys0 +
dst_tile->offset);
if (s_image->fmt->planar)
ipu_cpmem_set_uv_offset(chan->in_chan,
src_tile->u_off,
src_tile->v_off);
if (d_image->fmt->planar)
ipu_cpmem_set_uv_offset(outch,
dst_tile->u_off,
dst_tile->v_off);
ipu_idmac_select_buffer(chan->in_chan, 0);
ipu_idmac_select_buffer(outch, 0);
}
} else if (ctx->next_tile < ctx->num_tiles - 1) {
src_tile = &s_image->tile[ctx->next_tile + 1];
dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
dst_tile = &d_image->tile[dst_idx];
ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
s_image->base.phys0 + src_tile->offset);
ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
d_image->base.phys0 + dst_tile->offset);
ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
ctx->cur_buf_num ^= 1;
}
ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
ctx->next_tile++;
return IRQ_HANDLED;
done:
list_add_tail(&run->list, &chan->done_q);
chan->current_run = NULL;
run_next(chan);
return IRQ_WAKE_THREAD;
}
static irqreturn_t eof_irq(int irq, void *data)
{
struct ipu_image_convert_chan *chan = data;
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_ctx *ctx;
struct ipu_image_convert_run *run;
irqreturn_t ret = IRQ_HANDLED;
bool tile_complete = false;
unsigned long flags;
spin_lock_irqsave(&chan->irqlock, flags);
/* get current run and its context */
run = chan->current_run;
if (!run) {
ret = IRQ_NONE;
goto out;
}
ctx = run->ctx;
if (irq == chan->in_eof_irq) {
ctx->eof_mask |= EOF_IRQ_IN;
} else if (irq == chan->out_eof_irq) {
ctx->eof_mask |= EOF_IRQ_OUT;
} else if (irq == chan->rot_in_eof_irq ||
irq == chan->rot_out_eof_irq) {
if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
/* this was NOT a rotation op, shouldn't happen */
dev_err(priv->ipu->dev,
"Unexpected rotation interrupt\n");
goto out;
}
ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
} else {
dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
ret = IRQ_NONE;
goto out;
}
if (ipu_rot_mode_is_irt(ctx->rot_mode))
tile_complete = (ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
else
tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
if (tile_complete)
ret = do_tile_complete(run);
out:
spin_unlock_irqrestore(&chan->irqlock, flags);
return ret;
}
/*
* try to force the completion of runs for this ctx. Called when
* abort wait times out in ipu_image_convert_abort().
*/
static void force_abort(struct ipu_image_convert_ctx *ctx)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_run *run;
unsigned long flags;
spin_lock_irqsave(&chan->irqlock, flags);
run = chan->current_run;
if (run && run->ctx == ctx) {
convert_stop(run);
run->status = -EIO;
list_add_tail(&run->list, &chan->done_q);
chan->current_run = NULL;
run_next(chan);
}
spin_unlock_irqrestore(&chan->irqlock, flags);
empty_done_q(chan);
}
static void release_ipu_resources(struct ipu_image_convert_chan *chan)
{
if (chan->in_eof_irq >= 0)
free_irq(chan->in_eof_irq, chan);
if (chan->rot_in_eof_irq >= 0)
free_irq(chan->rot_in_eof_irq, chan);
if (chan->out_eof_irq >= 0)
free_irq(chan->out_eof_irq, chan);
if (chan->rot_out_eof_irq >= 0)
free_irq(chan->rot_out_eof_irq, chan);
if (!IS_ERR_OR_NULL(chan->in_chan))
ipu_idmac_put(chan->in_chan);
if (!IS_ERR_OR_NULL(chan->out_chan))
ipu_idmac_put(chan->out_chan);
if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
ipu_idmac_put(chan->rotation_in_chan);
if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
ipu_idmac_put(chan->rotation_out_chan);
if (!IS_ERR_OR_NULL(chan->ic))
ipu_ic_put(chan->ic);
chan->in_chan = chan->out_chan = chan->rotation_in_chan =
chan->rotation_out_chan = NULL;
chan->in_eof_irq = -1;
chan->rot_in_eof_irq = -1;
chan->out_eof_irq = -1;
chan->rot_out_eof_irq = -1;
}
static int get_eof_irq(struct ipu_image_convert_chan *chan,
struct ipuv3_channel *channel)
{
struct ipu_image_convert_priv *priv = chan->priv;
int ret, irq;
irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
if (ret < 0) {
dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
return ret;
}
return irq;
}
static int get_ipu_resources(struct ipu_image_convert_chan *chan)
{
const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
struct ipu_image_convert_priv *priv = chan->priv;
int ret;
/* get IC */
chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
if (IS_ERR(chan->ic)) {
dev_err(priv->ipu->dev, "could not acquire IC\n");
ret = PTR_ERR(chan->ic);
goto err;
}
/* get IDMAC channels */
chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
ret = -EBUSY;
goto err;
}
chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
dev_err(priv->ipu->dev,
"could not acquire idmac rotation channels\n");
ret = -EBUSY;
goto err;
}
/* acquire the EOF interrupts */
ret = get_eof_irq(chan, chan->in_chan);
if (ret < 0) {
chan->in_eof_irq = -1;
goto err;
}
chan->in_eof_irq = ret;
ret = get_eof_irq(chan, chan->rotation_in_chan);
if (ret < 0) {
chan->rot_in_eof_irq = -1;
goto err;
}
chan->rot_in_eof_irq = ret;
ret = get_eof_irq(chan, chan->out_chan);
if (ret < 0) {
chan->out_eof_irq = -1;
goto err;
}
chan->out_eof_irq = ret;
ret = get_eof_irq(chan, chan->rotation_out_chan);
if (ret < 0) {
chan->rot_out_eof_irq = -1;
goto err;
}
chan->rot_out_eof_irq = ret;
return 0;
err:
release_ipu_resources(chan);
return ret;
}
static int fill_image(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *ic_image,
struct ipu_image *image,
enum ipu_image_convert_type type)
{
struct ipu_image_convert_priv *priv = ctx->chan->priv;
ic_image->base = *image;
ic_image->type = type;
ic_image->fmt = get_format(image->pix.pixelformat);
if (!ic_image->fmt) {
dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
type == IMAGE_CONVERT_OUT ? "Output" : "Input");
return -EINVAL;
}
if (ic_image->fmt->planar)
ic_image->stride = ic_image->base.pix.width;
else
ic_image->stride = ic_image->base.pix.bytesperline;
return 0;
}
/* borrowed from drivers/media/v4l2-core/v4l2-common.c */
static unsigned int clamp_align(unsigned int x, unsigned int min,
unsigned int max, unsigned int align)
{
/* Bits that must be zero to be aligned */
unsigned int mask = ~((1 << align) - 1);
/* Clamp to aligned min and max */
x = clamp(x, (min + ~mask) & mask, max & mask);
/* Round to nearest aligned value */
if (align)
x = (x + (1 << (align - 1))) & mask;
return x;
}
/* Adjusts input/output images to IPU restrictions */
void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
enum ipu_rotate_mode rot_mode)
{
const struct ipu_image_pixfmt *infmt, *outfmt;
u32 w_align_out, h_align_out;
u32 w_align_in, h_align_in;
infmt = get_format(in->pix.pixelformat);
outfmt = get_format(out->pix.pixelformat);
/* set some default pixel formats if needed */
if (!infmt) {
in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
infmt = get_format(V4L2_PIX_FMT_RGB24);
}
if (!outfmt) {
out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
outfmt = get_format(V4L2_PIX_FMT_RGB24);
}
/* image converter does not handle fields */
in->pix.field = out->pix.field = V4L2_FIELD_NONE;
/* resizer cannot downsize more than 4:1 */
if (ipu_rot_mode_is_irt(rot_mode)) {
out->pix.height = max_t(__u32, out->pix.height,
in->pix.width / 4);
out->pix.width = max_t(__u32, out->pix.width,
in->pix.height / 4);
} else {
out->pix.width = max_t(__u32, out->pix.width,
in->pix.width / 4);
out->pix.height = max_t(__u32, out->pix.height,
in->pix.height / 4);
}
/* align input width/height */
w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
rot_mode));
h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
rot_mode));
in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
w_align_in);
in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
h_align_in);
/* align output width/height */
w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
rot_mode));
h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
rot_mode));
out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
w_align_out);
out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
h_align_out);
/* set input/output strides and image sizes */
in->pix.bytesperline = infmt->planar ?
clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
w_align_in) :
clamp_align((in->pix.width * infmt->bpp) >> 3,
((2 << w_align_in) * infmt->bpp) >> 3,
(MAX_W * infmt->bpp) >> 3,
w_align_in);
in->pix.sizeimage = infmt->planar ?
(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
in->pix.height * in->pix.bytesperline;
out->pix.bytesperline = outfmt->planar ? out->pix.width :
(out->pix.width * outfmt->bpp) >> 3;
out->pix.sizeimage = outfmt->planar ?
(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
out->pix.height * out->pix.bytesperline;
}
EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
/*
* this is used by ipu_image_convert_prepare() to verify set input and
* output images are valid before starting the conversion. Clients can
* also call it before calling ipu_image_convert_prepare().
*/
int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
enum ipu_rotate_mode rot_mode)
{
struct ipu_image testin, testout;
testin = *in;
testout = *out;
ipu_image_convert_adjust(&testin, &testout, rot_mode);
if (testin.pix.width != in->pix.width ||
testin.pix.height != in->pix.height ||
testout.pix.width != out->pix.width ||
testout.pix.height != out->pix.height)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
/*
* Call ipu_image_convert_prepare() to prepare for the conversion of
* given images and rotation mode. Returns a new conversion context.
*/
struct ipu_image_convert_ctx *
ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
struct ipu_image *in, struct ipu_image *out,
enum ipu_rotate_mode rot_mode,
ipu_image_convert_cb_t complete,
void *complete_context)
{
struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
struct ipu_image_convert_image *s_image, *d_image;
struct ipu_image_convert_chan *chan;
struct ipu_image_convert_ctx *ctx;
unsigned long flags;
unsigned int i;
bool get_res;
int ret;
if (!in || !out || !complete ||
(ic_task != IC_TASK_VIEWFINDER &&
ic_task != IC_TASK_POST_PROCESSOR))
return ERR_PTR(-EINVAL);
/* verify the in/out images before continuing */
ret = ipu_image_convert_verify(in, out, rot_mode);
if (ret) {
dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
__func__);
return ERR_PTR(ret);
}
chan = &priv->chan[ic_task];
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return ERR_PTR(-ENOMEM);
dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
chan->ic_task, ctx);
ctx->chan = chan;
init_completion(&ctx->aborted);
ctx->rot_mode = rot_mode;
/* Sets ctx->in.num_rows/cols as well */
ret = calc_image_resize_coefficients(ctx, in, out);
if (ret)
goto out_free;
s_image = &ctx->in;
d_image = &ctx->out;
/* set tiling and rotation */
if (ipu_rot_mode_is_irt(rot_mode)) {
d_image->num_rows = s_image->num_cols;
d_image->num_cols = s_image->num_rows;
} else {
d_image->num_rows = s_image->num_rows;
d_image->num_cols = s_image->num_cols;
}
ctx->num_tiles = d_image->num_cols * d_image->num_rows;
ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
if (ret)
goto out_free;
ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
if (ret)
goto out_free;
calc_out_tile_map(ctx);
find_seams(ctx, s_image, d_image);
ret = calc_tile_dimensions(ctx, s_image);
if (ret)
goto out_free;
ret = calc_tile_offsets(ctx, s_image);
if (ret)
goto out_free;
calc_tile_dimensions(ctx, d_image);
ret = calc_tile_offsets(ctx, d_image);
if (ret)
goto out_free;
calc_tile_resize_coefficients(ctx);
ret = ipu_ic_calc_csc(&ctx->csc,
s_image->base.pix.ycbcr_enc,
s_image->base.pix.quantization,
ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
d_image->base.pix.ycbcr_enc,
d_image->base.pix.quantization,
ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
if (ret)
goto out_free;
dump_format(ctx, s_image);
dump_format(ctx, d_image);
ctx->complete = complete;
ctx->complete_context = complete_context;
/*
* Can we use double-buffering for this operation? If there is
* only one tile (the whole image can be converted in a single
* operation) there's no point in using double-buffering. Also,
* the IPU's IDMAC channels allow only a single U and V plane
* offset shared between both buffers, but these offsets change
* for every tile, and therefore would have to be updated for
* each buffer which is not possible. So double-buffering is
* impossible when either the source or destination images are
* a planar format (YUV420, YUV422P, etc.). Further, differently
* sized tiles or different resizing coefficients per tile
* prevent double-buffering as well.
*/
ctx->double_buffering = (ctx->num_tiles > 1 &&
!s_image->fmt->planar &&
!d_image->fmt->planar);
for (i = 1; i < ctx->num_tiles; i++) {
if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
ctx->in.tile[i].height != ctx->in.tile[0].height ||
ctx->out.tile[i].width != ctx->out.tile[0].width ||
ctx->out.tile[i].height != ctx->out.tile[0].height) {
ctx->double_buffering = false;
break;
}
}
for (i = 1; i < ctx->in.num_cols; i++) {
if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
ctx->double_buffering = false;
break;
}
}
for (i = 1; i < ctx->in.num_rows; i++) {
if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
ctx->double_buffering = false;
break;
}
}
if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
unsigned long intermediate_size = d_image->tile[0].size;
for (i = 1; i < ctx->num_tiles; i++) {
if (d_image->tile[i].size > intermediate_size)
intermediate_size = d_image->tile[i].size;
}
ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
intermediate_size);
if (ret)
goto out_free;
if (ctx->double_buffering) {
ret = alloc_dma_buf(priv,
&ctx->rot_intermediate[1],
intermediate_size);
if (ret)
goto out_free_dmabuf0;
}
}
spin_lock_irqsave(&chan->irqlock, flags);
get_res = list_empty(&chan->ctx_list);
list_add_tail(&ctx->list, &chan->ctx_list);
spin_unlock_irqrestore(&chan->irqlock, flags);
if (get_res) {
ret = get_ipu_resources(chan);
if (ret)
goto out_free_dmabuf1;
}
return ctx;
out_free_dmabuf1:
free_dma_buf(priv, &ctx->rot_intermediate[1]);
spin_lock_irqsave(&chan->irqlock, flags);
list_del(&ctx->list);
spin_unlock_irqrestore(&chan->irqlock, flags);
out_free_dmabuf0:
free_dma_buf(priv, &ctx->rot_intermediate[0]);
out_free:
kfree(ctx);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
/*
* Carry out a single image conversion run. Only the physaddr's of the input
* and output image buffers are needed. The conversion context must have
* been created previously with ipu_image_convert_prepare().
*/
int ipu_image_convert_queue(struct ipu_image_convert_run *run)
{
struct ipu_image_convert_chan *chan;
struct ipu_image_convert_priv *priv;
struct ipu_image_convert_ctx *ctx;
unsigned long flags;
int ret = 0;
if (!run || !run->ctx || !run->in_phys || !run->out_phys)
return -EINVAL;
ctx = run->ctx;
chan = ctx->chan;
priv = chan->priv;
dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
chan->ic_task, ctx, run);
INIT_LIST_HEAD(&run->list);
spin_lock_irqsave(&chan->irqlock, flags);
if (ctx->aborting) {
ret = -EIO;
goto unlock;
}
list_add_tail(&run->list, &chan->pending_q);
if (!chan->current_run) {
ret = do_run(run);
if (ret)
chan->current_run = NULL;
}
unlock:
spin_unlock_irqrestore(&chan->irqlock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
/* Abort any active or pending conversions for this context */
static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
struct ipu_image_convert_run *run, *active_run, *tmp;
unsigned long flags;
int run_count, ret;
spin_lock_irqsave(&chan->irqlock, flags);
/* move all remaining pending runs in this context to done_q */
list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
if (run->ctx != ctx)
continue;
run->status = -EIO;
list_move_tail(&run->list, &chan->done_q);
}
run_count = get_run_count(ctx, &chan->done_q);
active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
chan->current_run : NULL;
if (active_run)
reinit_completion(&ctx->aborted);
ctx->aborting = true;
spin_unlock_irqrestore(&chan->irqlock, flags);
if (!run_count && !active_run) {
dev_dbg(priv->ipu->dev,
"%s: task %u: no abort needed for ctx %p\n",
__func__, chan->ic_task, ctx);
return;
}
if (!active_run) {
empty_done_q(chan);
return;
}
dev_dbg(priv->ipu->dev,
"%s: task %u: wait for completion: %d runs\n",
__func__, chan->ic_task, run_count);
ret = wait_for_completion_timeout(&ctx->aborted,
msecs_to_jiffies(10000));
if (ret == 0) {
dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
force_abort(ctx);
}
}
void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
{
__ipu_image_convert_abort(ctx);
ctx->aborting = false;
}
EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
/* Unprepare image conversion context */
void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
{
struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv;
unsigned long flags;
bool put_res;
/* make sure no runs are hanging around */
__ipu_image_convert_abort(ctx);
dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
chan->ic_task, ctx);
spin_lock_irqsave(&chan->irqlock, flags);
list_del(&ctx->list);
put_res = list_empty(&chan->ctx_list);
spin_unlock_irqrestore(&chan->irqlock, flags);
if (put_res)
release_ipu_resources(chan);
free_dma_buf(priv, &ctx->rot_intermediate[1]);
free_dma_buf(priv, &ctx->rot_intermediate[0]);
kfree(ctx);
}
EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
/*
* "Canned" asynchronous single image conversion. Allocates and returns
* a new conversion run. On successful return the caller must free the
* run and call ipu_image_convert_unprepare() after conversion completes.
*/
struct ipu_image_convert_run *
ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
struct ipu_image *in, struct ipu_image *out,
enum ipu_rotate_mode rot_mode,
ipu_image_convert_cb_t complete,
void *complete_context)
{
struct ipu_image_convert_ctx *ctx;
struct ipu_image_convert_run *run;
int ret;
ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
complete, complete_context);
if (IS_ERR(ctx))
return ERR_CAST(ctx);
run = kzalloc(sizeof(*run), GFP_KERNEL);
if (!run) {
ipu_image_convert_unprepare(ctx);
return ERR_PTR(-ENOMEM);
}
run->ctx = ctx;
run->in_phys = in->phys0;
run->out_phys = out->phys0;
ret = ipu_image_convert_queue(run);
if (ret) {
ipu_image_convert_unprepare(ctx);
kfree(run);
return ERR_PTR(ret);
}
return run;
}
EXPORT_SYMBOL_GPL(ipu_image_convert);
/* "Canned" synchronous single image conversion */
static void image_convert_sync_complete(struct ipu_image_convert_run *run,
void *data)
{
struct completion *comp = data;
complete(comp);
}
int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
struct ipu_image *in, struct ipu_image *out,
enum ipu_rotate_mode rot_mode)
{
struct ipu_image_convert_run *run;
struct completion comp;
int ret;
init_completion(&comp);
run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
image_convert_sync_complete, &comp);
if (IS_ERR(run))
return PTR_ERR(run);
ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
ret = (ret == 0) ? -ETIMEDOUT : 0;
ipu_image_convert_unprepare(run->ctx);
kfree(run);
return ret;
}
EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
{
struct ipu_image_convert_priv *priv;
int i;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
ipu->image_convert_priv = priv;
priv->ipu = ipu;
for (i = 0; i < IC_NUM_TASKS; i++) {
struct ipu_image_convert_chan *chan = &priv->chan[i];
chan->ic_task = i;
chan->priv = priv;
chan->dma_ch = &image_convert_dma_chan[i];
chan->in_eof_irq = -1;
chan->rot_in_eof_irq = -1;
chan->out_eof_irq = -1;
chan->rot_out_eof_irq = -1;
spin_lock_init(&chan->irqlock);
INIT_LIST_HEAD(&chan->ctx_list);
INIT_LIST_HEAD(&chan->pending_q);
INIT_LIST_HEAD(&chan->done_q);
}
return 0;
}
void ipu_image_convert_exit(struct ipu_soc *ipu)
{
}