linuxdebug/drivers/infiniband/sw/rdmavt/mr.c

918 lines
21 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
/*
* Copyright(c) 2016 Intel Corporation.
*/
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <rdma/ib_umem.h>
#include <rdma/rdma_vt.h>
#include "vt.h"
#include "mr.h"
#include "trace.h"
/**
* rvt_driver_mr_init - Init MR resources per driver
* @rdi: rvt dev struct
*
* Do any intilization needed when a driver registers with rdmavt.
*
* Return: 0 on success or errno on failure
*/
int rvt_driver_mr_init(struct rvt_dev_info *rdi)
{
unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
unsigned lk_tab_size;
int i;
/*
* The top hfi1_lkey_table_size bits are used to index the
* table. The lower 8 bits can be owned by the user (copied from
* the LKEY). The remaining bits act as a generation number or tag.
*/
if (!lkey_table_size)
return -EINVAL;
spin_lock_init(&rdi->lkey_table.lock);
/* ensure generation is at least 4 bits */
if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
lkey_table_size = rdi->dparms.lkey_table_size;
}
rdi->lkey_table.max = 1 << lkey_table_size;
rdi->lkey_table.shift = 32 - lkey_table_size;
lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
rdi->lkey_table.table = (struct rvt_mregion __rcu **)
vmalloc_node(lk_tab_size, rdi->dparms.node);
if (!rdi->lkey_table.table)
return -ENOMEM;
RCU_INIT_POINTER(rdi->dma_mr, NULL);
for (i = 0; i < rdi->lkey_table.max; i++)
RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
rdi->dparms.props.max_mr = rdi->lkey_table.max;
return 0;
}
/**
* rvt_mr_exit - clean up MR
* @rdi: rvt dev structure
*
* called when drivers have unregistered or perhaps failed to register with us
*/
void rvt_mr_exit(struct rvt_dev_info *rdi)
{
if (rdi->dma_mr)
rvt_pr_err(rdi, "DMA MR not null!\n");
vfree(rdi->lkey_table.table);
}
static void rvt_deinit_mregion(struct rvt_mregion *mr)
{
int i = mr->mapsz;
mr->mapsz = 0;
while (i)
kfree(mr->map[--i]);
percpu_ref_exit(&mr->refcount);
}
static void __rvt_mregion_complete(struct percpu_ref *ref)
{
struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
refcount);
complete(&mr->comp);
}
static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
int count, unsigned int percpu_flags)
{
int m, i = 0;
struct rvt_dev_info *dev = ib_to_rvt(pd->device);
mr->mapsz = 0;
m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
for (; i < m; i++) {
mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
dev->dparms.node);
if (!mr->map[i])
goto bail;
mr->mapsz++;
}
init_completion(&mr->comp);
/* count returning the ptr to user */
if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
percpu_flags, GFP_KERNEL))
goto bail;
atomic_set(&mr->lkey_invalid, 0);
mr->pd = pd;
mr->max_segs = count;
return 0;
bail:
rvt_deinit_mregion(mr);
return -ENOMEM;
}
/**
* rvt_alloc_lkey - allocate an lkey
* @mr: memory region that this lkey protects
* @dma_region: 0->normal key, 1->restricted DMA key
*
* Returns 0 if successful, otherwise returns -errno.
*
* Increments mr reference count as required.
*
* Sets the lkey field mr for non-dma regions.
*
*/
static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
{
unsigned long flags;
u32 r;
u32 n;
int ret = 0;
struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
rvt_get_mr(mr);
spin_lock_irqsave(&rkt->lock, flags);
/* special case for dma_mr lkey == 0 */
if (dma_region) {
struct rvt_mregion *tmr;
tmr = rcu_access_pointer(dev->dma_mr);
if (!tmr) {
mr->lkey_published = 1;
/* Insure published written first */
rcu_assign_pointer(dev->dma_mr, mr);
rvt_get_mr(mr);
}
goto success;
}
/* Find the next available LKEY */
r = rkt->next;
n = r;
for (;;) {
if (!rcu_access_pointer(rkt->table[r]))
break;
r = (r + 1) & (rkt->max - 1);
if (r == n)
goto bail;
}
rkt->next = (r + 1) & (rkt->max - 1);
/*
* Make sure lkey is never zero which is reserved to indicate an
* unrestricted LKEY.
*/
rkt->gen++;
/*
* bits are capped to ensure enough bits for generation number
*/
mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
<< 8);
if (mr->lkey == 0) {
mr->lkey |= 1 << 8;
rkt->gen++;
}
mr->lkey_published = 1;
/* Insure published written first */
rcu_assign_pointer(rkt->table[r], mr);
success:
spin_unlock_irqrestore(&rkt->lock, flags);
out:
return ret;
bail:
rvt_put_mr(mr);
spin_unlock_irqrestore(&rkt->lock, flags);
ret = -ENOMEM;
goto out;
}
/**
* rvt_free_lkey - free an lkey
* @mr: mr to free from tables
*/
static void rvt_free_lkey(struct rvt_mregion *mr)
{
unsigned long flags;
u32 lkey = mr->lkey;
u32 r;
struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
int freed = 0;
spin_lock_irqsave(&rkt->lock, flags);
if (!lkey) {
if (mr->lkey_published) {
mr->lkey_published = 0;
/* insure published is written before pointer */
rcu_assign_pointer(dev->dma_mr, NULL);
rvt_put_mr(mr);
}
} else {
if (!mr->lkey_published)
goto out;
r = lkey >> (32 - dev->dparms.lkey_table_size);
mr->lkey_published = 0;
/* insure published is written before pointer */
rcu_assign_pointer(rkt->table[r], NULL);
}
freed++;
out:
spin_unlock_irqrestore(&rkt->lock, flags);
if (freed)
percpu_ref_kill(&mr->refcount);
}
static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
{
struct rvt_mr *mr;
int rval = -ENOMEM;
int m;
/* Allocate struct plus pointers to first level page tables. */
m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
if (!mr)
goto bail;
rval = rvt_init_mregion(&mr->mr, pd, count, 0);
if (rval)
goto bail;
/*
* ib_reg_phys_mr() will initialize mr->ibmr except for
* lkey and rkey.
*/
rval = rvt_alloc_lkey(&mr->mr, 0);
if (rval)
goto bail_mregion;
mr->ibmr.lkey = mr->mr.lkey;
mr->ibmr.rkey = mr->mr.lkey;
done:
return mr;
bail_mregion:
rvt_deinit_mregion(&mr->mr);
bail:
kfree(mr);
mr = ERR_PTR(rval);
goto done;
}
static void __rvt_free_mr(struct rvt_mr *mr)
{
rvt_free_lkey(&mr->mr);
rvt_deinit_mregion(&mr->mr);
kfree(mr);
}
/**
* rvt_get_dma_mr - get a DMA memory region
* @pd: protection domain for this memory region
* @acc: access flags
*
* Return: the memory region on success, otherwise returns an errno.
*/
struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
{
struct rvt_mr *mr;
struct ib_mr *ret;
int rval;
if (ibpd_to_rvtpd(pd)->user)
return ERR_PTR(-EPERM);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr) {
ret = ERR_PTR(-ENOMEM);
goto bail;
}
rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
if (rval) {
ret = ERR_PTR(rval);
goto bail;
}
rval = rvt_alloc_lkey(&mr->mr, 1);
if (rval) {
ret = ERR_PTR(rval);
goto bail_mregion;
}
mr->mr.access_flags = acc;
ret = &mr->ibmr;
done:
return ret;
bail_mregion:
rvt_deinit_mregion(&mr->mr);
bail:
kfree(mr);
goto done;
}
/**
* rvt_reg_user_mr - register a userspace memory region
* @pd: protection domain for this memory region
* @start: starting userspace address
* @length: length of region to register
* @virt_addr: associated virtual address
* @mr_access_flags: access flags for this memory region
* @udata: unused by the driver
*
* Return: the memory region on success, otherwise returns an errno.
*/
struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt_addr, int mr_access_flags,
struct ib_udata *udata)
{
struct rvt_mr *mr;
struct ib_umem *umem;
struct sg_page_iter sg_iter;
int n, m;
struct ib_mr *ret;
if (length == 0)
return ERR_PTR(-EINVAL);
umem = ib_umem_get(pd->device, start, length, mr_access_flags);
if (IS_ERR(umem))
return (void *)umem;
n = ib_umem_num_pages(umem);
mr = __rvt_alloc_mr(n, pd);
if (IS_ERR(mr)) {
ret = (struct ib_mr *)mr;
goto bail_umem;
}
mr->mr.user_base = start;
mr->mr.iova = virt_addr;
mr->mr.length = length;
mr->mr.offset = ib_umem_offset(umem);
mr->mr.access_flags = mr_access_flags;
mr->umem = umem;
mr->mr.page_shift = PAGE_SHIFT;
m = 0;
n = 0;
for_each_sgtable_page (&umem->sgt_append.sgt, &sg_iter, 0) {
void *vaddr;
vaddr = page_address(sg_page_iter_page(&sg_iter));
if (!vaddr) {
ret = ERR_PTR(-EINVAL);
goto bail_inval;
}
mr->mr.map[m]->segs[n].vaddr = vaddr;
mr->mr.map[m]->segs[n].length = PAGE_SIZE;
trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
if (++n == RVT_SEGSZ) {
m++;
n = 0;
}
}
return &mr->ibmr;
bail_inval:
__rvt_free_mr(mr);
bail_umem:
ib_umem_release(umem);
return ret;
}
/**
* rvt_dereg_clean_qp_cb - callback from iterator
* @qp: the qp
* @v: the mregion (as u64)
*
* This routine fields the callback for all QPs and
* for QPs in the same PD as the MR will call the
* rvt_qp_mr_clean() to potentially cleanup references.
*/
static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
{
struct rvt_mregion *mr = (struct rvt_mregion *)v;
/* skip PDs that are not ours */
if (mr->pd != qp->ibqp.pd)
return;
rvt_qp_mr_clean(qp, mr->lkey);
}
/**
* rvt_dereg_clean_qps - find QPs for reference cleanup
* @mr: the MR that is being deregistered
*
* This routine iterates RC QPs looking for references
* to the lkey noted in mr.
*/
static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
{
struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
}
/**
* rvt_check_refs - check references
* @mr: the megion
* @t: the caller identification
*
* This routine checks MRs holding a reference during
* when being de-registered.
*
* If the count is non-zero, the code calls a clean routine then
* waits for the timeout for the count to zero.
*/
static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
{
unsigned long timeout;
struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
if (mr->lkey) {
/* avoid dma mr */
rvt_dereg_clean_qps(mr);
/* @mr was indexed on rcu protected @lkey_table */
synchronize_rcu();
}
timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
if (!timeout) {
rvt_pr_err(rdi,
"%s timeout mr %p pd %p lkey %x refcount %ld\n",
t, mr, mr->pd, mr->lkey,
atomic_long_read(&mr->refcount.data->count));
rvt_get_mr(mr);
return -EBUSY;
}
return 0;
}
/**
* rvt_mr_has_lkey - is MR
* @mr: the mregion
* @lkey: the lkey
*/
bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
{
return mr && lkey == mr->lkey;
}
/**
* rvt_ss_has_lkey - is mr in sge tests
* @ss: the sge state
* @lkey: the lkey
*
* This code tests for an MR in the indicated
* sge state.
*/
bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
{
int i;
bool rval = false;
if (!ss->num_sge)
return rval;
/* first one */
rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
/* any others */
for (i = 0; !rval && i < ss->num_sge - 1; i++)
rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
return rval;
}
/**
* rvt_dereg_mr - unregister and free a memory region
* @ibmr: the memory region to free
* @udata: unused by the driver
*
* Note that this is called to free MRs created by rvt_get_dma_mr()
* or rvt_reg_user_mr().
*
* Returns 0 on success.
*/
int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
{
struct rvt_mr *mr = to_imr(ibmr);
int ret;
rvt_free_lkey(&mr->mr);
rvt_put_mr(&mr->mr); /* will set completion if last */
ret = rvt_check_refs(&mr->mr, __func__);
if (ret)
goto out;
rvt_deinit_mregion(&mr->mr);
ib_umem_release(mr->umem);
kfree(mr);
out:
return ret;
}
/**
* rvt_alloc_mr - Allocate a memory region usable with the
* @pd: protection domain for this memory region
* @mr_type: mem region type
* @max_num_sg: Max number of segments allowed
*
* Return: the memory region on success, otherwise return an errno.
*/
struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg)
{
struct rvt_mr *mr;
if (mr_type != IB_MR_TYPE_MEM_REG)
return ERR_PTR(-EINVAL);
mr = __rvt_alloc_mr(max_num_sg, pd);
if (IS_ERR(mr))
return (struct ib_mr *)mr;
return &mr->ibmr;
}
/**
* rvt_set_page - page assignment function called by ib_sg_to_pages
* @ibmr: memory region
* @addr: dma address of mapped page
*
* Return: 0 on success
*/
static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
{
struct rvt_mr *mr = to_imr(ibmr);
u32 ps = 1 << mr->mr.page_shift;
u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
int m, n;
if (unlikely(mapped_segs == mr->mr.max_segs))
return -ENOMEM;
m = mapped_segs / RVT_SEGSZ;
n = mapped_segs % RVT_SEGSZ;
mr->mr.map[m]->segs[n].vaddr = (void *)addr;
mr->mr.map[m]->segs[n].length = ps;
mr->mr.length += ps;
trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
return 0;
}
/**
* rvt_map_mr_sg - map sg list and set it the memory region
* @ibmr: memory region
* @sg: dma mapped scatterlist
* @sg_nents: number of entries in sg
* @sg_offset: offset in bytes into sg
*
* Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
*
* Return: number of sg elements mapped to the memory region
*/
int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
int sg_nents, unsigned int *sg_offset)
{
struct rvt_mr *mr = to_imr(ibmr);
int ret;
mr->mr.length = 0;
mr->mr.page_shift = PAGE_SHIFT;
ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
mr->mr.user_base = ibmr->iova;
mr->mr.iova = ibmr->iova;
mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
mr->mr.length = (size_t)ibmr->length;
trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
return ret;
}
/**
* rvt_fast_reg_mr - fast register physical MR
* @qp: the queue pair where the work request comes from
* @ibmr: the memory region to be registered
* @key: updated key for this memory region
* @access: access flags for this memory region
*
* Returns 0 on success.
*/
int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
int access)
{
struct rvt_mr *mr = to_imr(ibmr);
if (qp->ibqp.pd != mr->mr.pd)
return -EACCES;
/* not applicable to dma MR or user MR */
if (!mr->mr.lkey || mr->umem)
return -EINVAL;
if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
return -EINVAL;
ibmr->lkey = key;
ibmr->rkey = key;
mr->mr.lkey = key;
mr->mr.access_flags = access;
mr->mr.iova = ibmr->iova;
atomic_set(&mr->mr.lkey_invalid, 0);
return 0;
}
EXPORT_SYMBOL(rvt_fast_reg_mr);
/**
* rvt_invalidate_rkey - invalidate an MR rkey
* @qp: queue pair associated with the invalidate op
* @rkey: rkey to invalidate
*
* Returns 0 on success.
*/
int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
{
struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
struct rvt_mregion *mr;
if (rkey == 0)
return -EINVAL;
rcu_read_lock();
mr = rcu_dereference(
rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
goto bail;
atomic_set(&mr->lkey_invalid, 1);
rcu_read_unlock();
return 0;
bail:
rcu_read_unlock();
return -EINVAL;
}
EXPORT_SYMBOL(rvt_invalidate_rkey);
/**
* rvt_sge_adjacent - is isge compressible
* @last_sge: last outgoing SGE written
* @sge: SGE to check
*
* If adjacent will update last_sge to add length.
*
* Return: true if isge is adjacent to last sge
*/
static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
struct ib_sge *sge)
{
if (last_sge && sge->lkey == last_sge->mr->lkey &&
((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
if (sge->lkey) {
if (unlikely((sge->addr - last_sge->mr->user_base +
sge->length > last_sge->mr->length)))
return false; /* overrun, caller will catch */
} else {
last_sge->length += sge->length;
}
last_sge->sge_length += sge->length;
trace_rvt_sge_adjacent(last_sge, sge);
return true;
}
return false;
}
/**
* rvt_lkey_ok - check IB SGE for validity and initialize
* @rkt: table containing lkey to check SGE against
* @pd: protection domain
* @isge: outgoing internal SGE
* @last_sge: last outgoing SGE written
* @sge: SGE to check
* @acc: access flags
*
* Check the IB SGE for validity and initialize our internal version
* of it.
*
* Increments the reference count when a new sge is stored.
*
* Return: 0 if compressed, 1 if added , otherwise returns -errno.
*/
int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
struct rvt_sge *isge, struct rvt_sge *last_sge,
struct ib_sge *sge, int acc)
{
struct rvt_mregion *mr;
unsigned n, m;
size_t off;
/*
* We use LKEY == zero for kernel virtual addresses
* (see rvt_get_dma_mr()).
*/
if (sge->lkey == 0) {
struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
if (pd->user)
return -EINVAL;
if (rvt_sge_adjacent(last_sge, sge))
return 0;
rcu_read_lock();
mr = rcu_dereference(dev->dma_mr);
if (!mr)
goto bail;
rvt_get_mr(mr);
rcu_read_unlock();
isge->mr = mr;
isge->vaddr = (void *)sge->addr;
isge->length = sge->length;
isge->sge_length = sge->length;
isge->m = 0;
isge->n = 0;
goto ok;
}
if (rvt_sge_adjacent(last_sge, sge))
return 0;
rcu_read_lock();
mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
if (!mr)
goto bail;
rvt_get_mr(mr);
if (!READ_ONCE(mr->lkey_published))
goto bail_unref;
if (unlikely(atomic_read(&mr->lkey_invalid) ||
mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
goto bail_unref;
off = sge->addr - mr->user_base;
if (unlikely(sge->addr < mr->user_base ||
off + sge->length > mr->length ||
(mr->access_flags & acc) != acc))
goto bail_unref;
rcu_read_unlock();
off += mr->offset;
if (mr->page_shift) {
/*
* page sizes are uniform power of 2 so no loop is necessary
* entries_spanned_by_off is the number of times the loop below
* would have executed.
*/
size_t entries_spanned_by_off;
entries_spanned_by_off = off >> mr->page_shift;
off -= (entries_spanned_by_off << mr->page_shift);
m = entries_spanned_by_off / RVT_SEGSZ;
n = entries_spanned_by_off % RVT_SEGSZ;
} else {
m = 0;
n = 0;
while (off >= mr->map[m]->segs[n].length) {
off -= mr->map[m]->segs[n].length;
n++;
if (n >= RVT_SEGSZ) {
m++;
n = 0;
}
}
}
isge->mr = mr;
isge->vaddr = mr->map[m]->segs[n].vaddr + off;
isge->length = mr->map[m]->segs[n].length - off;
isge->sge_length = sge->length;
isge->m = m;
isge->n = n;
ok:
trace_rvt_sge_new(isge, sge);
return 1;
bail_unref:
rvt_put_mr(mr);
bail:
rcu_read_unlock();
return -EINVAL;
}
EXPORT_SYMBOL(rvt_lkey_ok);
/**
* rvt_rkey_ok - check the IB virtual address, length, and RKEY
* @qp: qp for validation
* @sge: SGE state
* @len: length of data
* @vaddr: virtual address to place data
* @rkey: rkey to check
* @acc: access flags
*
* Return: 1 if successful, otherwise 0.
*
* increments the reference count upon success
*/
int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
u32 len, u64 vaddr, u32 rkey, int acc)
{
struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
struct rvt_lkey_table *rkt = &dev->lkey_table;
struct rvt_mregion *mr;
unsigned n, m;
size_t off;
/*
* We use RKEY == zero for kernel virtual addresses
* (see rvt_get_dma_mr()).
*/
rcu_read_lock();
if (rkey == 0) {
struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
if (pd->user)
goto bail;
mr = rcu_dereference(rdi->dma_mr);
if (!mr)
goto bail;
rvt_get_mr(mr);
rcu_read_unlock();
sge->mr = mr;
sge->vaddr = (void *)vaddr;
sge->length = len;
sge->sge_length = len;
sge->m = 0;
sge->n = 0;
goto ok;
}
mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
if (!mr)
goto bail;
rvt_get_mr(mr);
/* insure mr read is before test */
if (!READ_ONCE(mr->lkey_published))
goto bail_unref;
if (unlikely(atomic_read(&mr->lkey_invalid) ||
mr->lkey != rkey || qp->ibqp.pd != mr->pd))
goto bail_unref;
off = vaddr - mr->iova;
if (unlikely(vaddr < mr->iova || off + len > mr->length ||
(mr->access_flags & acc) == 0))
goto bail_unref;
rcu_read_unlock();
off += mr->offset;
if (mr->page_shift) {
/*
* page sizes are uniform power of 2 so no loop is necessary
* entries_spanned_by_off is the number of times the loop below
* would have executed.
*/
size_t entries_spanned_by_off;
entries_spanned_by_off = off >> mr->page_shift;
off -= (entries_spanned_by_off << mr->page_shift);
m = entries_spanned_by_off / RVT_SEGSZ;
n = entries_spanned_by_off % RVT_SEGSZ;
} else {
m = 0;
n = 0;
while (off >= mr->map[m]->segs[n].length) {
off -= mr->map[m]->segs[n].length;
n++;
if (n >= RVT_SEGSZ) {
m++;
n = 0;
}
}
}
sge->mr = mr;
sge->vaddr = mr->map[m]->segs[n].vaddr + off;
sge->length = mr->map[m]->segs[n].length - off;
sge->sge_length = len;
sge->m = m;
sge->n = n;
ok:
return 1;
bail_unref:
rvt_put_mr(mr);
bail:
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(rvt_rkey_ok);