// SPDX-License-Identifier: GPL-2.0-or-later /* * SM4 Cipher Algorithm, AES-NI/AVX2 optimized. * as specified in * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html * * Copyright (C) 2018 Markku-Juhani O. Saarinen <mjos@iki.fi> * Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi> * Copyright (c) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com> */ /* Based on SM4 AES-NI work by libgcrypt and Markku-Juhani O. Saarinen at: * https://github.com/mjosaarinen/sm4ni */ #include <linux/linkage.h> #include <linux/cfi_types.h> #include <asm/frame.h> #define rRIP (%rip) /* vector registers */ #define RX0 %ymm0 #define RX1 %ymm1 #define MASK_4BIT %ymm2 #define RTMP0 %ymm3 #define RTMP1 %ymm4 #define RTMP2 %ymm5 #define RTMP3 %ymm6 #define RTMP4 %ymm7 #define RA0 %ymm8 #define RA1 %ymm9 #define RA2 %ymm10 #define RA3 %ymm11 #define RB0 %ymm12 #define RB1 %ymm13 #define RB2 %ymm14 #define RB3 %ymm15 #define RNOT %ymm0 #define RBSWAP %ymm1 #define RX0x %xmm0 #define RX1x %xmm1 #define MASK_4BITx %xmm2 #define RNOTx %xmm0 #define RBSWAPx %xmm1 #define RTMP0x %xmm3 #define RTMP1x %xmm4 #define RTMP2x %xmm5 #define RTMP3x %xmm6 #define RTMP4x %xmm7 /* helper macros */ /* Transpose four 32-bit words between 128-bit vector lanes. */ #define transpose_4x4(x0, x1, x2, x3, t1, t2) \ vpunpckhdq x1, x0, t2; \ vpunpckldq x1, x0, x0; \ \ vpunpckldq x3, x2, t1; \ vpunpckhdq x3, x2, x2; \ \ vpunpckhqdq t1, x0, x1; \ vpunpcklqdq t1, x0, x0; \ \ vpunpckhqdq x2, t2, x3; \ vpunpcklqdq x2, t2, x2; /* post-SubByte transform. */ #define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \ vpand x, mask4bit, tmp0; \ vpandn x, mask4bit, x; \ vpsrld $4, x, x; \ \ vpshufb tmp0, lo_t, tmp0; \ vpshufb x, hi_t, x; \ vpxor tmp0, x, x; /* post-SubByte transform. Note: x has been XOR'ed with mask4bit by * 'vaeslastenc' instruction. */ #define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \ vpandn mask4bit, x, tmp0; \ vpsrld $4, x, x; \ vpand x, mask4bit, x; \ \ vpshufb tmp0, lo_t, tmp0; \ vpshufb x, hi_t, x; \ vpxor tmp0, x, x; .section .rodata.cst16, "aM", @progbits, 16 .align 16 /* * Following four affine transform look-up tables are from work by * Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni * * These allow exposing SM4 S-Box from AES SubByte. */ /* pre-SubByte affine transform, from SM4 field to AES field. */ .Lpre_tf_lo_s: .quad 0x9197E2E474720701, 0xC7C1B4B222245157 .Lpre_tf_hi_s: .quad 0xE240AB09EB49A200, 0xF052B91BF95BB012 /* post-SubByte affine transform, from AES field to SM4 field. */ .Lpost_tf_lo_s: .quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82 .Lpost_tf_hi_s: .quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF /* For isolating SubBytes from AESENCLAST, inverse shift row */ .Linv_shift_row: .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 /* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */ .Linv_shift_row_rol_8: .byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e .byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06 /* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */ .Linv_shift_row_rol_16: .byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01 .byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09 /* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */ .Linv_shift_row_rol_24: .byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04 .byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c /* For CTR-mode IV byteswap */ .Lbswap128_mask: .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 /* For input word byte-swap */ .Lbswap32_mask: .byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 .align 4 /* 4-bit mask */ .L0f0f0f0f: .long 0x0f0f0f0f /* 12 bytes, only for padding */ .Lpadding_deadbeef: .long 0xdeadbeef, 0xdeadbeef, 0xdeadbeef .text .align 16 .align 8 SYM_FUNC_START_LOCAL(__sm4_crypt_blk16) /* input: * %rdi: round key array, CTX * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: sixteen parallel * plaintext blocks * output: * RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: sixteen parallel * ciphertext blocks */ FRAME_BEGIN vbroadcasti128 .Lbswap32_mask rRIP, RTMP2; vpshufb RTMP2, RA0, RA0; vpshufb RTMP2, RA1, RA1; vpshufb RTMP2, RA2, RA2; vpshufb RTMP2, RA3, RA3; vpshufb RTMP2, RB0, RB0; vpshufb RTMP2, RB1, RB1; vpshufb RTMP2, RB2, RB2; vpshufb RTMP2, RB3, RB3; vpbroadcastd .L0f0f0f0f rRIP, MASK_4BIT; transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1); transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1); #define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \ vpbroadcastd (4*(round))(%rdi), RX0; \ vbroadcasti128 .Lpre_tf_lo_s rRIP, RTMP4; \ vbroadcasti128 .Lpre_tf_hi_s rRIP, RTMP1; \ vmovdqa RX0, RX1; \ vpxor s1, RX0, RX0; \ vpxor s2, RX0, RX0; \ vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \ vbroadcasti128 .Lpost_tf_lo_s rRIP, RTMP2; \ vbroadcasti128 .Lpost_tf_hi_s rRIP, RTMP3; \ vpxor r1, RX1, RX1; \ vpxor r2, RX1, RX1; \ vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \ \ /* sbox, non-linear part */ \ transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \ transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \ vextracti128 $1, RX0, RTMP4x; \ vextracti128 $1, RX1, RTMP0x; \ vaesenclast MASK_4BITx, RX0x, RX0x; \ vaesenclast MASK_4BITx, RTMP4x, RTMP4x; \ vaesenclast MASK_4BITx, RX1x, RX1x; \ vaesenclast MASK_4BITx, RTMP0x, RTMP0x; \ vinserti128 $1, RTMP4x, RX0, RX0; \ vbroadcasti128 .Linv_shift_row rRIP, RTMP4; \ vinserti128 $1, RTMP0x, RX1, RX1; \ transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \ transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \ \ /* linear part */ \ vpshufb RTMP4, RX0, RTMP0; \ vpxor RTMP0, s0, s0; /* s0 ^ x */ \ vpshufb RTMP4, RX1, RTMP2; \ vbroadcasti128 .Linv_shift_row_rol_8 rRIP, RTMP4; \ vpxor RTMP2, r0, r0; /* r0 ^ x */ \ vpshufb RTMP4, RX0, RTMP1; \ vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \ vpshufb RTMP4, RX1, RTMP3; \ vbroadcasti128 .Linv_shift_row_rol_16 rRIP, RTMP4; \ vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \ vpshufb RTMP4, RX0, RTMP1; \ vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \ vpshufb RTMP4, RX1, RTMP3; \ vbroadcasti128 .Linv_shift_row_rol_24 rRIP, RTMP4; \ vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \ vpshufb RTMP4, RX0, RTMP1; \ vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \ vpslld $2, RTMP0, RTMP1; \ vpsrld $30, RTMP0, RTMP0; \ vpxor RTMP0, s0, s0; \ /* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \ vpxor RTMP1, s0, s0; \ vpshufb RTMP4, RX1, RTMP3; \ vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \ vpslld $2, RTMP2, RTMP3; \ vpsrld $30, RTMP2, RTMP2; \ vpxor RTMP2, r0, r0; \ /* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \ vpxor RTMP3, r0, r0; leaq (32*4)(%rdi), %rax; .align 16 .Lroundloop_blk8: ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3); ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0); ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1); ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2); leaq (4*4)(%rdi), %rdi; cmpq %rax, %rdi; jne .Lroundloop_blk8; #undef ROUND vbroadcasti128 .Lbswap128_mask rRIP, RTMP2; transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1); transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1); vpshufb RTMP2, RA0, RA0; vpshufb RTMP2, RA1, RA1; vpshufb RTMP2, RA2, RA2; vpshufb RTMP2, RA3, RA3; vpshufb RTMP2, RB0, RB0; vpshufb RTMP2, RB1, RB1; vpshufb RTMP2, RB2, RB2; vpshufb RTMP2, RB3, RB3; FRAME_END RET; SYM_FUNC_END(__sm4_crypt_blk16) #define inc_le128(x, minus_one, tmp) \ vpcmpeqq minus_one, x, tmp; \ vpsubq minus_one, x, x; \ vpslldq $8, tmp, tmp; \ vpsubq tmp, x, x; /* * void sm4_aesni_avx2_ctr_enc_blk16(const u32 *rk, u8 *dst, * const u8 *src, u8 *iv) */ .align 8 SYM_TYPED_FUNC_START(sm4_aesni_avx2_ctr_enc_blk16) /* input: * %rdi: round key array, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: iv (big endian, 128bit) */ FRAME_BEGIN movq 8(%rcx), %rax; bswapq %rax; vzeroupper; vbroadcasti128 .Lbswap128_mask rRIP, RTMP3; vpcmpeqd RNOT, RNOT, RNOT; vpsrldq $8, RNOT, RNOT; /* ab: -1:0 ; cd: -1:0 */ vpaddq RNOT, RNOT, RTMP2; /* ab: -2:0 ; cd: -2:0 */ /* load IV and byteswap */ vmovdqu (%rcx), RTMP4x; vpshufb RTMP3x, RTMP4x, RTMP4x; vmovdqa RTMP4x, RTMP0x; inc_le128(RTMP4x, RNOTx, RTMP1x); vinserti128 $1, RTMP4x, RTMP0, RTMP0; vpshufb RTMP3, RTMP0, RA0; /* +1 ; +0 */ /* check need for handling 64-bit overflow and carry */ cmpq $(0xffffffffffffffff - 16), %rax; ja .Lhandle_ctr_carry; /* construct IVs */ vpsubq RTMP2, RTMP0, RTMP0; /* +3 ; +2 */ vpshufb RTMP3, RTMP0, RA1; vpsubq RTMP2, RTMP0, RTMP0; /* +5 ; +4 */ vpshufb RTMP3, RTMP0, RA2; vpsubq RTMP2, RTMP0, RTMP0; /* +7 ; +6 */ vpshufb RTMP3, RTMP0, RA3; vpsubq RTMP2, RTMP0, RTMP0; /* +9 ; +8 */ vpshufb RTMP3, RTMP0, RB0; vpsubq RTMP2, RTMP0, RTMP0; /* +11 ; +10 */ vpshufb RTMP3, RTMP0, RB1; vpsubq RTMP2, RTMP0, RTMP0; /* +13 ; +12 */ vpshufb RTMP3, RTMP0, RB2; vpsubq RTMP2, RTMP0, RTMP0; /* +15 ; +14 */ vpshufb RTMP3, RTMP0, RB3; vpsubq RTMP2, RTMP0, RTMP0; /* +16 */ vpshufb RTMP3x, RTMP0x, RTMP0x; jmp .Lctr_carry_done; .Lhandle_ctr_carry: /* construct IVs */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RA1; /* +3 ; +2 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RA2; /* +5 ; +4 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RA3; /* +7 ; +6 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RB0; /* +9 ; +8 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RB1; /* +11 ; +10 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RB2; /* +13 ; +12 */ inc_le128(RTMP0, RNOT, RTMP1); inc_le128(RTMP0, RNOT, RTMP1); vpshufb RTMP3, RTMP0, RB3; /* +15 ; +14 */ inc_le128(RTMP0, RNOT, RTMP1); vextracti128 $1, RTMP0, RTMP0x; vpshufb RTMP3x, RTMP0x, RTMP0x; /* +16 */ .align 4 .Lctr_carry_done: /* store new IV */ vmovdqu RTMP0x, (%rcx); call __sm4_crypt_blk16; vpxor (0 * 32)(%rdx), RA0, RA0; vpxor (1 * 32)(%rdx), RA1, RA1; vpxor (2 * 32)(%rdx), RA2, RA2; vpxor (3 * 32)(%rdx), RA3, RA3; vpxor (4 * 32)(%rdx), RB0, RB0; vpxor (5 * 32)(%rdx), RB1, RB1; vpxor (6 * 32)(%rdx), RB2, RB2; vpxor (7 * 32)(%rdx), RB3, RB3; vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RA1, (1 * 32)(%rsi); vmovdqu RA2, (2 * 32)(%rsi); vmovdqu RA3, (3 * 32)(%rsi); vmovdqu RB0, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RB2, (6 * 32)(%rsi); vmovdqu RB3, (7 * 32)(%rsi); vzeroall; FRAME_END RET; SYM_FUNC_END(sm4_aesni_avx2_ctr_enc_blk16) /* * void sm4_aesni_avx2_cbc_dec_blk16(const u32 *rk, u8 *dst, * const u8 *src, u8 *iv) */ .align 8 SYM_TYPED_FUNC_START(sm4_aesni_avx2_cbc_dec_blk16) /* input: * %rdi: round key array, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: iv */ FRAME_BEGIN vzeroupper; vmovdqu (0 * 32)(%rdx), RA0; vmovdqu (1 * 32)(%rdx), RA1; vmovdqu (2 * 32)(%rdx), RA2; vmovdqu (3 * 32)(%rdx), RA3; vmovdqu (4 * 32)(%rdx), RB0; vmovdqu (5 * 32)(%rdx), RB1; vmovdqu (6 * 32)(%rdx), RB2; vmovdqu (7 * 32)(%rdx), RB3; call __sm4_crypt_blk16; vmovdqu (%rcx), RNOTx; vinserti128 $1, (%rdx), RNOT, RNOT; vpxor RNOT, RA0, RA0; vpxor (0 * 32 + 16)(%rdx), RA1, RA1; vpxor (1 * 32 + 16)(%rdx), RA2, RA2; vpxor (2 * 32 + 16)(%rdx), RA3, RA3; vpxor (3 * 32 + 16)(%rdx), RB0, RB0; vpxor (4 * 32 + 16)(%rdx), RB1, RB1; vpxor (5 * 32 + 16)(%rdx), RB2, RB2; vpxor (6 * 32 + 16)(%rdx), RB3, RB3; vmovdqu (7 * 32 + 16)(%rdx), RNOTx; vmovdqu RNOTx, (%rcx); /* store new IV */ vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RA1, (1 * 32)(%rsi); vmovdqu RA2, (2 * 32)(%rsi); vmovdqu RA3, (3 * 32)(%rsi); vmovdqu RB0, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RB2, (6 * 32)(%rsi); vmovdqu RB3, (7 * 32)(%rsi); vzeroall; FRAME_END RET; SYM_FUNC_END(sm4_aesni_avx2_cbc_dec_blk16) /* * void sm4_aesni_avx2_cfb_dec_blk16(const u32 *rk, u8 *dst, * const u8 *src, u8 *iv) */ .align 8 SYM_TYPED_FUNC_START(sm4_aesni_avx2_cfb_dec_blk16) /* input: * %rdi: round key array, CTX * %rsi: dst (16 blocks) * %rdx: src (16 blocks) * %rcx: iv */ FRAME_BEGIN vzeroupper; /* Load input */ vmovdqu (%rcx), RNOTx; vinserti128 $1, (%rdx), RNOT, RA0; vmovdqu (0 * 32 + 16)(%rdx), RA1; vmovdqu (1 * 32 + 16)(%rdx), RA2; vmovdqu (2 * 32 + 16)(%rdx), RA3; vmovdqu (3 * 32 + 16)(%rdx), RB0; vmovdqu (4 * 32 + 16)(%rdx), RB1; vmovdqu (5 * 32 + 16)(%rdx), RB2; vmovdqu (6 * 32 + 16)(%rdx), RB3; /* Update IV */ vmovdqu (7 * 32 + 16)(%rdx), RNOTx; vmovdqu RNOTx, (%rcx); call __sm4_crypt_blk16; vpxor (0 * 32)(%rdx), RA0, RA0; vpxor (1 * 32)(%rdx), RA1, RA1; vpxor (2 * 32)(%rdx), RA2, RA2; vpxor (3 * 32)(%rdx), RA3, RA3; vpxor (4 * 32)(%rdx), RB0, RB0; vpxor (5 * 32)(%rdx), RB1, RB1; vpxor (6 * 32)(%rdx), RB2, RB2; vpxor (7 * 32)(%rdx), RB3, RB3; vmovdqu RA0, (0 * 32)(%rsi); vmovdqu RA1, (1 * 32)(%rsi); vmovdqu RA2, (2 * 32)(%rsi); vmovdqu RA3, (3 * 32)(%rsi); vmovdqu RB0, (4 * 32)(%rsi); vmovdqu RB1, (5 * 32)(%rsi); vmovdqu RB2, (6 * 32)(%rsi); vmovdqu RB3, (7 * 32)(%rsi); vzeroall; FRAME_END RET; SYM_FUNC_END(sm4_aesni_avx2_cfb_dec_blk16)