// SPDX-License-Identifier: GPL-2.0-or-later /* * Realtek RTL2830 DVB-T demodulator driver * * Copyright (C) 2011 Antti Palosaari <crope@iki.fi> */ #include "rtl2830_priv.h" /* Our regmap is bypassing I2C adapter lock, thus we do it! */ static int rtl2830_bulk_write(struct i2c_client *client, unsigned int reg, const void *val, size_t val_count) { struct rtl2830_dev *dev = i2c_get_clientdata(client); int ret; i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT); ret = regmap_bulk_write(dev->regmap, reg, val, val_count); i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT); return ret; } static int rtl2830_update_bits(struct i2c_client *client, unsigned int reg, unsigned int mask, unsigned int val) { struct rtl2830_dev *dev = i2c_get_clientdata(client); int ret; i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT); ret = regmap_update_bits(dev->regmap, reg, mask, val); i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT); return ret; } static int rtl2830_bulk_read(struct i2c_client *client, unsigned int reg, void *val, size_t val_count) { struct rtl2830_dev *dev = i2c_get_clientdata(client); int ret; i2c_lock_bus(client->adapter, I2C_LOCK_SEGMENT); ret = regmap_bulk_read(dev->regmap, reg, val, val_count); i2c_unlock_bus(client->adapter, I2C_LOCK_SEGMENT); return ret; } static int rtl2830_init(struct dvb_frontend *fe) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache; int ret, i; struct rtl2830_reg_val_mask tab[] = { {0x00d, 0x01, 0x03}, {0x00d, 0x10, 0x10}, {0x104, 0x00, 0x1e}, {0x105, 0x80, 0x80}, {0x110, 0x02, 0x03}, {0x110, 0x08, 0x0c}, {0x17b, 0x00, 0x40}, {0x17d, 0x05, 0x0f}, {0x17d, 0x50, 0xf0}, {0x18c, 0x08, 0x0f}, {0x18d, 0x00, 0xc0}, {0x188, 0x05, 0x0f}, {0x189, 0x00, 0xfc}, {0x2d5, 0x02, 0x02}, {0x2f1, 0x02, 0x06}, {0x2f1, 0x20, 0xf8}, {0x16d, 0x00, 0x01}, {0x1a6, 0x00, 0x80}, {0x106, dev->pdata->vtop, 0x3f}, {0x107, dev->pdata->krf, 0x3f}, {0x112, 0x28, 0xff}, {0x103, dev->pdata->agc_targ_val, 0xff}, {0x00a, 0x02, 0x07}, {0x140, 0x0c, 0x3c}, {0x140, 0x40, 0xc0}, {0x15b, 0x05, 0x07}, {0x15b, 0x28, 0x38}, {0x15c, 0x05, 0x07}, {0x15c, 0x28, 0x38}, {0x115, dev->pdata->spec_inv, 0x01}, {0x16f, 0x01, 0x07}, {0x170, 0x18, 0x38}, {0x172, 0x0f, 0x0f}, {0x173, 0x08, 0x38}, {0x175, 0x01, 0x07}, {0x176, 0x00, 0xc0}, }; for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = rtl2830_update_bits(client, tab[i].reg, tab[i].mask, tab[i].val); if (ret) goto err; } ret = rtl2830_bulk_write(client, 0x18f, "\x28\x00", 2); if (ret) goto err; ret = rtl2830_bulk_write(client, 0x195, "\x04\x06\x0a\x12\x0a\x12\x1e\x28", 8); if (ret) goto err; /* TODO: spec init */ /* soft reset */ ret = rtl2830_update_bits(client, 0x101, 0x04, 0x04); if (ret) goto err; ret = rtl2830_update_bits(client, 0x101, 0x04, 0x00); if (ret) goto err; /* init stats here in order signal app which stats are supported */ c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->cnr.len = 1; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.len = 1; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.len = 1; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; dev->sleeping = false; return ret; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int rtl2830_sleep(struct dvb_frontend *fe) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); dev->sleeping = true; dev->fe_status = 0; return 0; } static int rtl2830_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *s) { s->min_delay_ms = 500; s->step_size = fe->ops.info.frequency_stepsize_hz * 2; s->max_drift = (fe->ops.info.frequency_stepsize_hz * 2) + 1; return 0; } static int rtl2830_set_frontend(struct dvb_frontend *fe) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i; u64 num; u8 buf[3], u8tmp; u32 if_ctl, if_frequency; static const u8 bw_params1[3][34] = { { 0x1f, 0xf0, 0x1f, 0xf0, 0x1f, 0xfa, 0x00, 0x17, 0x00, 0x41, 0x00, 0x64, 0x00, 0x67, 0x00, 0x38, 0x1f, 0xde, 0x1f, 0x7a, 0x1f, 0x47, 0x1f, 0x7c, 0x00, 0x30, 0x01, 0x4b, 0x02, 0x82, 0x03, 0x73, 0x03, 0xcf, /* 6 MHz */ }, { 0x1f, 0xfa, 0x1f, 0xda, 0x1f, 0xc1, 0x1f, 0xb3, 0x1f, 0xca, 0x00, 0x07, 0x00, 0x4d, 0x00, 0x6d, 0x00, 0x40, 0x1f, 0xca, 0x1f, 0x4d, 0x1f, 0x2a, 0x1f, 0xb2, 0x00, 0xec, 0x02, 0x7e, 0x03, 0xd0, 0x04, 0x53, /* 7 MHz */ }, { 0x00, 0x10, 0x00, 0x0e, 0x1f, 0xf7, 0x1f, 0xc9, 0x1f, 0xa0, 0x1f, 0xa6, 0x1f, 0xec, 0x00, 0x4e, 0x00, 0x7d, 0x00, 0x3a, 0x1f, 0x98, 0x1f, 0x10, 0x1f, 0x40, 0x00, 0x75, 0x02, 0x5f, 0x04, 0x24, 0x04, 0xdb, /* 8 MHz */ }, }; static const u8 bw_params2[3][6] = { {0xc3, 0x0c, 0x44, 0x33, 0x33, 0x30}, /* 6 MHz */ {0xb8, 0xe3, 0x93, 0x99, 0x99, 0x98}, /* 7 MHz */ {0xae, 0xba, 0xf3, 0x26, 0x66, 0x64}, /* 8 MHz */ }; dev_dbg(&client->dev, "frequency=%u bandwidth_hz=%u inversion=%u\n", c->frequency, c->bandwidth_hz, c->inversion); /* program tuner */ if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); switch (c->bandwidth_hz) { case 6000000: i = 0; break; case 7000000: i = 1; break; case 8000000: i = 2; break; default: dev_err(&client->dev, "invalid bandwidth_hz %u\n", c->bandwidth_hz); return -EINVAL; } ret = rtl2830_update_bits(client, 0x008, 0x06, i << 1); if (ret) goto err; /* program if frequency */ if (fe->ops.tuner_ops.get_if_frequency) ret = fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency); else ret = -EINVAL; if (ret) goto err; num = if_frequency % dev->pdata->clk; num *= 0x400000; num = div_u64(num, dev->pdata->clk); num = -num; if_ctl = num & 0x3fffff; dev_dbg(&client->dev, "if_frequency=%d if_ctl=%08x\n", if_frequency, if_ctl); buf[0] = (if_ctl >> 16) & 0x3f; buf[1] = (if_ctl >> 8) & 0xff; buf[2] = (if_ctl >> 0) & 0xff; ret = rtl2830_bulk_read(client, 0x119, &u8tmp, 1); if (ret) goto err; buf[0] |= u8tmp & 0xc0; /* [7:6] */ ret = rtl2830_bulk_write(client, 0x119, buf, 3); if (ret) goto err; /* 1/2 split I2C write */ ret = rtl2830_bulk_write(client, 0x11c, &bw_params1[i][0], 17); if (ret) goto err; /* 2/2 split I2C write */ ret = rtl2830_bulk_write(client, 0x12d, &bw_params1[i][17], 17); if (ret) goto err; ret = rtl2830_bulk_write(client, 0x19d, bw_params2[i], 6); if (ret) goto err; return ret; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int rtl2830_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); int ret; u8 buf[3]; if (dev->sleeping) return 0; ret = rtl2830_bulk_read(client, 0x33c, buf, 2); if (ret) goto err; ret = rtl2830_bulk_read(client, 0x351, &buf[2], 1); if (ret) goto err; dev_dbg(&client->dev, "TPS=%*ph\n", 3, buf); switch ((buf[0] >> 2) & 3) { case 0: c->modulation = QPSK; break; case 1: c->modulation = QAM_16; break; case 2: c->modulation = QAM_64; break; } switch ((buf[2] >> 2) & 1) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; } switch ((buf[2] >> 0) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; break; case 2: c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: c->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((buf[0] >> 4) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; break; case 1: c->hierarchy = HIERARCHY_1; break; case 2: c->hierarchy = HIERARCHY_2; break; case 3: c->hierarchy = HIERARCHY_4; break; } switch ((buf[1] >> 3) & 7) { case 0: c->code_rate_HP = FEC_1_2; break; case 1: c->code_rate_HP = FEC_2_3; break; case 2: c->code_rate_HP = FEC_3_4; break; case 3: c->code_rate_HP = FEC_5_6; break; case 4: c->code_rate_HP = FEC_7_8; break; } switch ((buf[1] >> 0) & 7) { case 0: c->code_rate_LP = FEC_1_2; break; case 1: c->code_rate_LP = FEC_2_3; break; case 2: c->code_rate_LP = FEC_3_4; break; case 3: c->code_rate_LP = FEC_5_6; break; case 4: c->code_rate_LP = FEC_7_8; break; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int rtl2830_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache; int ret, stmp; unsigned int utmp; u8 u8tmp, buf[2]; *status = 0; if (dev->sleeping) return 0; ret = rtl2830_bulk_read(client, 0x351, &u8tmp, 1); if (ret) goto err; u8tmp = (u8tmp >> 3) & 0x0f; /* [6:3] */ if (u8tmp == 11) { *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; } else if (u8tmp == 10) { *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI; } dev->fe_status = *status; /* Signal strength */ if (dev->fe_status & FE_HAS_SIGNAL) { /* Read IF AGC */ ret = rtl2830_bulk_read(client, 0x359, buf, 2); if (ret) goto err; stmp = buf[0] << 8 | buf[1] << 0; stmp = sign_extend32(stmp, 13); utmp = clamp_val(-4 * stmp + 32767, 0x0000, 0xffff); dev_dbg(&client->dev, "IF AGC=%d\n", stmp); c->strength.stat[0].scale = FE_SCALE_RELATIVE; c->strength.stat[0].uvalue = utmp; } else { c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } /* CNR */ if (dev->fe_status & FE_HAS_VITERBI) { unsigned int hierarchy, constellation; #define CONSTELLATION_NUM 3 #define HIERARCHY_NUM 4 static const u32 constant[CONSTELLATION_NUM][HIERARCHY_NUM] = { {70705899, 70705899, 70705899, 70705899}, {82433173, 82433173, 87483115, 94445660}, {92888734, 92888734, 95487525, 99770748}, }; ret = rtl2830_bulk_read(client, 0x33c, &u8tmp, 1); if (ret) goto err; constellation = (u8tmp >> 2) & 0x03; /* [3:2] */ if (constellation > CONSTELLATION_NUM - 1) goto err; hierarchy = (u8tmp >> 4) & 0x07; /* [6:4] */ if (hierarchy > HIERARCHY_NUM - 1) goto err; ret = rtl2830_bulk_read(client, 0x40c, buf, 2); if (ret) goto err; utmp = buf[0] << 8 | buf[1] << 0; if (utmp) stmp = (constant[constellation][hierarchy] - intlog10(utmp)) / ((1 << 24) / 10000); else stmp = 0; dev_dbg(&client->dev, "CNR raw=%u\n", utmp); c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].svalue = stmp; } else { c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } /* BER */ if (dev->fe_status & FE_HAS_LOCK) { ret = rtl2830_bulk_read(client, 0x34e, buf, 2); if (ret) goto err; utmp = buf[0] << 8 | buf[1] << 0; dev->post_bit_error += utmp; dev->post_bit_count += 1000000; dev_dbg(&client->dev, "BER errors=%u total=1000000\n", utmp); c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = dev->post_bit_error; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue = dev->post_bit_count; } else { c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } return ret; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int rtl2830_read_snr(struct dvb_frontend *fe, u16 *snr) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL) *snr = div_s64(c->cnr.stat[0].svalue, 100); else *snr = 0; return 0; } static int rtl2830_read_ber(struct dvb_frontend *fe, u32 *ber) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); *ber = (dev->post_bit_error - dev->post_bit_error_prev); dev->post_bit_error_prev = dev->post_bit_error; return 0; } static int rtl2830_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { *ucblocks = 0; return 0; } static int rtl2830_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; if (c->strength.stat[0].scale == FE_SCALE_RELATIVE) *strength = c->strength.stat[0].uvalue; else *strength = 0; return 0; } static const struct dvb_frontend_ops rtl2830_ops = { .delsys = {SYS_DVBT}, .info = { .name = "Realtek RTL2830 (DVB-T)", .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .init = rtl2830_init, .sleep = rtl2830_sleep, .get_tune_settings = rtl2830_get_tune_settings, .set_frontend = rtl2830_set_frontend, .get_frontend = rtl2830_get_frontend, .read_status = rtl2830_read_status, .read_snr = rtl2830_read_snr, .read_ber = rtl2830_read_ber, .read_ucblocks = rtl2830_read_ucblocks, .read_signal_strength = rtl2830_read_signal_strength, }; static int rtl2830_pid_filter_ctrl(struct dvb_frontend *fe, int onoff) { struct i2c_client *client = fe->demodulator_priv; int ret; u8 u8tmp; dev_dbg(&client->dev, "onoff=%d\n", onoff); /* enable / disable PID filter */ if (onoff) u8tmp = 0x80; else u8tmp = 0x00; ret = rtl2830_update_bits(client, 0x061, 0x80, u8tmp); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int rtl2830_pid_filter(struct dvb_frontend *fe, u8 index, u16 pid, int onoff) { struct i2c_client *client = fe->demodulator_priv; struct rtl2830_dev *dev = i2c_get_clientdata(client); int ret; u8 buf[4]; dev_dbg(&client->dev, "index=%d pid=%04x onoff=%d\n", index, pid, onoff); /* skip invalid PIDs (0x2000) */ if (pid > 0x1fff || index > 32) return 0; if (onoff) set_bit(index, &dev->filters); else clear_bit(index, &dev->filters); /* enable / disable PIDs */ buf[0] = (dev->filters >> 0) & 0xff; buf[1] = (dev->filters >> 8) & 0xff; buf[2] = (dev->filters >> 16) & 0xff; buf[3] = (dev->filters >> 24) & 0xff; ret = rtl2830_bulk_write(client, 0x062, buf, 4); if (ret) goto err; /* add PID */ buf[0] = (pid >> 8) & 0xff; buf[1] = (pid >> 0) & 0xff; ret = rtl2830_bulk_write(client, 0x066 + 2 * index, buf, 2); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } /* * I2C gate/mux/repeater logic * We must use unlocked __i2c_transfer() here (through regmap) because of I2C * adapter lock is already taken by tuner driver. * Gate is closed automatically after single I2C transfer. */ static int rtl2830_select(struct i2c_mux_core *muxc, u32 chan_id) { struct i2c_client *client = i2c_mux_priv(muxc); struct rtl2830_dev *dev = i2c_get_clientdata(client); int ret; dev_dbg(&client->dev, "\n"); /* open I2C repeater for 1 transfer, closes automatically */ /* XXX: regmap_update_bits() does not lock I2C adapter */ ret = regmap_update_bits(dev->regmap, 0x101, 0x08, 0x08); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static struct dvb_frontend *rtl2830_get_dvb_frontend(struct i2c_client *client) { struct rtl2830_dev *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); return &dev->fe; } static struct i2c_adapter *rtl2830_get_i2c_adapter(struct i2c_client *client) { struct rtl2830_dev *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); return dev->muxc->adapter[0]; } /* * We implement own I2C access routines for regmap in order to get manual access * to I2C adapter lock, which is needed for I2C mux adapter. */ static int rtl2830_regmap_read(void *context, const void *reg_buf, size_t reg_size, void *val_buf, size_t val_size) { struct i2c_client *client = context; int ret; struct i2c_msg msg[2] = { { .addr = client->addr, .flags = 0, .len = reg_size, .buf = (u8 *)reg_buf, }, { .addr = client->addr, .flags = I2C_M_RD, .len = val_size, .buf = val_buf, } }; ret = __i2c_transfer(client->adapter, msg, 2); if (ret != 2) { dev_warn(&client->dev, "i2c reg read failed %d\n", ret); if (ret >= 0) ret = -EREMOTEIO; return ret; } return 0; } static int rtl2830_regmap_write(void *context, const void *data, size_t count) { struct i2c_client *client = context; int ret; struct i2c_msg msg[1] = { { .addr = client->addr, .flags = 0, .len = count, .buf = (u8 *)data, } }; ret = __i2c_transfer(client->adapter, msg, 1); if (ret != 1) { dev_warn(&client->dev, "i2c reg write failed %d\n", ret); if (ret >= 0) ret = -EREMOTEIO; return ret; } return 0; } static int rtl2830_regmap_gather_write(void *context, const void *reg, size_t reg_len, const void *val, size_t val_len) { struct i2c_client *client = context; int ret; u8 buf[256]; struct i2c_msg msg[1] = { { .addr = client->addr, .flags = 0, .len = 1 + val_len, .buf = buf, } }; buf[0] = *(u8 const *)reg; memcpy(&buf[1], val, val_len); ret = __i2c_transfer(client->adapter, msg, 1); if (ret != 1) { dev_warn(&client->dev, "i2c reg write failed %d\n", ret); if (ret >= 0) ret = -EREMOTEIO; return ret; } return 0; } static int rtl2830_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct rtl2830_platform_data *pdata = client->dev.platform_data; struct rtl2830_dev *dev; int ret; u8 u8tmp; static const struct regmap_bus regmap_bus = { .read = rtl2830_regmap_read, .write = rtl2830_regmap_write, .gather_write = rtl2830_regmap_gather_write, .val_format_endian_default = REGMAP_ENDIAN_NATIVE, }; static const struct regmap_range_cfg regmap_range_cfg[] = { { .selector_reg = 0x00, .selector_mask = 0xff, .selector_shift = 0, .window_start = 0, .window_len = 0x100, .range_min = 0 * 0x100, .range_max = 5 * 0x100, }, }; static const struct regmap_config regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 5 * 0x100, .ranges = regmap_range_cfg, .num_ranges = ARRAY_SIZE(regmap_range_cfg), }; dev_dbg(&client->dev, "\n"); if (pdata == NULL) { ret = -EINVAL; goto err; } /* allocate memory for the internal state */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev == NULL) { ret = -ENOMEM; goto err; } /* setup the state */ i2c_set_clientdata(client, dev); dev->client = client; dev->pdata = client->dev.platform_data; dev->sleeping = true; dev->regmap = regmap_init(&client->dev, ®map_bus, client, ®map_config); if (IS_ERR(dev->regmap)) { ret = PTR_ERR(dev->regmap); goto err_kfree; } /* check if the demod is there */ ret = rtl2830_bulk_read(client, 0x000, &u8tmp, 1); if (ret) goto err_regmap_exit; /* create muxed i2c adapter for tuner */ dev->muxc = i2c_mux_alloc(client->adapter, &client->dev, 1, 0, 0, rtl2830_select, NULL); if (!dev->muxc) { ret = -ENOMEM; goto err_regmap_exit; } dev->muxc->priv = client; ret = i2c_mux_add_adapter(dev->muxc, 0, 0, 0); if (ret) goto err_regmap_exit; /* create dvb frontend */ memcpy(&dev->fe.ops, &rtl2830_ops, sizeof(dev->fe.ops)); dev->fe.demodulator_priv = client; /* setup callbacks */ pdata->get_dvb_frontend = rtl2830_get_dvb_frontend; pdata->get_i2c_adapter = rtl2830_get_i2c_adapter; pdata->pid_filter = rtl2830_pid_filter; pdata->pid_filter_ctrl = rtl2830_pid_filter_ctrl; dev_info(&client->dev, "Realtek RTL2830 successfully attached\n"); return 0; err_regmap_exit: regmap_exit(dev->regmap); err_kfree: kfree(dev); err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static void rtl2830_remove(struct i2c_client *client) { struct rtl2830_dev *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); i2c_mux_del_adapters(dev->muxc); regmap_exit(dev->regmap); kfree(dev); } static const struct i2c_device_id rtl2830_id_table[] = { {"rtl2830", 0}, {} }; MODULE_DEVICE_TABLE(i2c, rtl2830_id_table); static struct i2c_driver rtl2830_driver = { .driver = { .name = "rtl2830", .suppress_bind_attrs = true, }, .probe = rtl2830_probe, .remove = rtl2830_remove, .id_table = rtl2830_id_table, }; module_i2c_driver(rtl2830_driver); MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); MODULE_DESCRIPTION("Realtek RTL2830 DVB-T demodulator driver"); MODULE_LICENSE("GPL");