// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/slab.h> #define USB2_PHY_USB_PHY_UTMI_CTRL0 (0x3c) #define SLEEPM BIT(0) #define OPMODE_MASK GENMASK(4, 3) #define OPMODE_NORMAL (0x00) #define OPMODE_NONDRIVING BIT(3) #define TERMSEL BIT(5) #define USB2_PHY_USB_PHY_UTMI_CTRL1 (0x40) #define XCVRSEL BIT(0) #define USB2_PHY_USB_PHY_UTMI_CTRL5 (0x50) #define POR BIT(1) #define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0 (0x54) #define SIDDQ BIT(2) #define RETENABLEN BIT(3) #define FSEL_MASK GENMASK(6, 4) #define FSEL_DEFAULT (0x3 << 4) #define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1 (0x58) #define VBUSVLDEXTSEL0 BIT(4) #define PLLBTUNE BIT(5) #define USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2 (0x5c) #define VREGBYPASS BIT(0) #define USB2_PHY_USB_PHY_HS_PHY_CTRL1 (0x60) #define VBUSVLDEXT0 BIT(0) #define USB2_PHY_USB_PHY_HS_PHY_CTRL2 (0x64) #define USB2_AUTO_RESUME BIT(0) #define USB2_SUSPEND_N BIT(2) #define USB2_SUSPEND_N_SEL BIT(3) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0 (0x6c) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1 (0x70) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2 (0x74) #define USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3 (0x78) #define PARAM_OVRD_MASK 0xFF #define USB2_PHY_USB_PHY_CFG0 (0x94) #define UTMI_PHY_DATAPATH_CTRL_OVERRIDE_EN BIT(0) #define UTMI_PHY_CMN_CTRL_OVERRIDE_EN BIT(1) #define USB2_PHY_USB_PHY_REFCLK_CTRL (0xa0) #define REFCLK_SEL_MASK GENMASK(1, 0) #define REFCLK_SEL_DEFAULT (0x2 << 0) #define HS_DISCONNECT_MASK GENMASK(2, 0) #define SQUELCH_DETECTOR_MASK GENMASK(7, 5) #define HS_AMPLITUDE_MASK GENMASK(3, 0) #define PREEMPHASIS_DURATION_MASK BIT(5) #define PREEMPHASIS_AMPLITUDE_MASK GENMASK(7, 6) #define HS_RISE_FALL_MASK GENMASK(1, 0) #define HS_CROSSOVER_VOLTAGE_MASK GENMASK(3, 2) #define HS_OUTPUT_IMPEDANCE_MASK GENMASK(5, 4) #define LS_FS_OUTPUT_IMPEDANCE_MASK GENMASK(3, 0) static const char * const qcom_snps_hsphy_vreg_names[] = { "vdda-pll", "vdda33", "vdda18", }; #define SNPS_HS_NUM_VREGS ARRAY_SIZE(qcom_snps_hsphy_vreg_names) struct override_param { s32 value; u8 reg_val; }; struct override_param_map { const char *prop_name; const struct override_param *param_table; u8 table_size; u8 reg_offset; u8 param_mask; }; struct phy_override_seq { bool need_update; u8 offset; u8 value; u8 mask; }; #define NUM_HSPHY_TUNING_PARAMS (9) /** * struct qcom_snps_hsphy - snps hs phy attributes * * @dev: device structure * * @phy: generic phy * @base: iomapped memory space for snps hs phy * * @num_clks: number of clocks * @clks: array of clocks * @phy_reset: phy reset control * @vregs: regulator supplies bulk data * @phy_initialized: if PHY has been initialized correctly * @mode: contains the current mode the PHY is in * @update_seq_cfg: tuning parameters for phy init */ struct qcom_snps_hsphy { struct device *dev; struct phy *phy; void __iomem *base; int num_clks; struct clk_bulk_data *clks; struct reset_control *phy_reset; struct regulator_bulk_data vregs[SNPS_HS_NUM_VREGS]; bool phy_initialized; enum phy_mode mode; struct phy_override_seq update_seq_cfg[NUM_HSPHY_TUNING_PARAMS]; }; static int qcom_snps_hsphy_clk_init(struct qcom_snps_hsphy *hsphy) { struct device *dev = hsphy->dev; hsphy->num_clks = 2; hsphy->clks = devm_kcalloc(dev, hsphy->num_clks, sizeof(*hsphy->clks), GFP_KERNEL); if (!hsphy->clks) return -ENOMEM; /* * TODO: Currently no device tree instantiation of the PHY is using the clock. * This needs to be fixed in order for this code to be able to use devm_clk_bulk_get(). */ hsphy->clks[0].id = "cfg_ahb"; hsphy->clks[0].clk = devm_clk_get_optional(dev, "cfg_ahb"); if (IS_ERR(hsphy->clks[0].clk)) return dev_err_probe(dev, PTR_ERR(hsphy->clks[0].clk), "failed to get cfg_ahb clk\n"); hsphy->clks[1].id = "ref"; hsphy->clks[1].clk = devm_clk_get(dev, "ref"); if (IS_ERR(hsphy->clks[1].clk)) return dev_err_probe(dev, PTR_ERR(hsphy->clks[1].clk), "failed to get ref clk\n"); return 0; } static inline void qcom_snps_hsphy_write_mask(void __iomem *base, u32 offset, u32 mask, u32 val) { u32 reg; reg = readl_relaxed(base + offset); reg &= ~mask; reg |= val & mask; writel_relaxed(reg, base + offset); /* Ensure above write is completed */ readl_relaxed(base + offset); } static int qcom_snps_hsphy_suspend(struct qcom_snps_hsphy *hsphy) { dev_dbg(&hsphy->phy->dev, "Suspend QCOM SNPS PHY\n"); if (hsphy->mode == PHY_MODE_USB_HOST) { /* Enable auto-resume to meet remote wakeup timing */ qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, USB2_AUTO_RESUME, USB2_AUTO_RESUME); usleep_range(500, 1000); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, 0, USB2_AUTO_RESUME); } return 0; } static int qcom_snps_hsphy_resume(struct qcom_snps_hsphy *hsphy) { dev_dbg(&hsphy->phy->dev, "Resume QCOM SNPS PHY, mode\n"); return 0; } static int __maybe_unused qcom_snps_hsphy_runtime_suspend(struct device *dev) { struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev); if (!hsphy->phy_initialized) return 0; return qcom_snps_hsphy_suspend(hsphy); } static int __maybe_unused qcom_snps_hsphy_runtime_resume(struct device *dev) { struct qcom_snps_hsphy *hsphy = dev_get_drvdata(dev); if (!hsphy->phy_initialized) return 0; return qcom_snps_hsphy_resume(hsphy); } static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy); hsphy->mode = mode; return 0; } static const struct override_param hs_disconnect_sc7280[] = { { -272, 0 }, { 0, 1 }, { 317, 2 }, { 630, 3 }, { 973, 4 }, { 1332, 5 }, { 1743, 6 }, { 2156, 7 }, }; static const struct override_param squelch_det_threshold_sc7280[] = { { -2090, 7 }, { -1560, 6 }, { -1030, 5 }, { -530, 4 }, { 0, 3 }, { 530, 2 }, { 1060, 1 }, { 1590, 0 }, }; static const struct override_param hs_amplitude_sc7280[] = { { -660, 0 }, { -440, 1 }, { -220, 2 }, { 0, 3 }, { 230, 4 }, { 440, 5 }, { 650, 6 }, { 890, 7 }, { 1110, 8 }, { 1330, 9 }, { 1560, 10 }, { 1780, 11 }, { 2000, 12 }, { 2220, 13 }, { 2430, 14 }, { 2670, 15 }, }; static const struct override_param preemphasis_duration_sc7280[] = { { 10000, 1 }, { 20000, 0 }, }; static const struct override_param preemphasis_amplitude_sc7280[] = { { 10000, 1 }, { 20000, 2 }, { 30000, 3 }, { 40000, 0 }, }; static const struct override_param hs_rise_fall_time_sc7280[] = { { -4100, 3 }, { 0, 2 }, { 2810, 1 }, { 5430, 0 }, }; static const struct override_param hs_crossover_voltage_sc7280[] = { { -31000, 1 }, { 0, 3 }, { 28000, 2 }, }; static const struct override_param hs_output_impedance_sc7280[] = { { -2300000, 3 }, { 0, 2 }, { 2600000, 1 }, { 6100000, 0 }, }; static const struct override_param ls_fs_output_impedance_sc7280[] = { { -1053, 15 }, { -557, 7 }, { 0, 3 }, { 612, 1 }, { 1310, 0 }, }; static const struct override_param_map sc7280_snps_7nm_phy[] = { { "qcom,hs-disconnect-bp", hs_disconnect_sc7280, ARRAY_SIZE(hs_disconnect_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0, HS_DISCONNECT_MASK }, { "qcom,squelch-detector-bp", squelch_det_threshold_sc7280, ARRAY_SIZE(squelch_det_threshold_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X0, SQUELCH_DETECTOR_MASK }, { "qcom,hs-amplitude-bp", hs_amplitude_sc7280, ARRAY_SIZE(hs_amplitude_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1, HS_AMPLITUDE_MASK }, { "qcom,pre-emphasis-duration-bp", preemphasis_duration_sc7280, ARRAY_SIZE(preemphasis_duration_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1, PREEMPHASIS_DURATION_MASK, }, { "qcom,pre-emphasis-amplitude-bp", preemphasis_amplitude_sc7280, ARRAY_SIZE(preemphasis_amplitude_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X1, PREEMPHASIS_AMPLITUDE_MASK, }, { "qcom,hs-rise-fall-time-bp", hs_rise_fall_time_sc7280, ARRAY_SIZE(hs_rise_fall_time_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2, HS_RISE_FALL_MASK }, { "qcom,hs-crossover-voltage-microvolt", hs_crossover_voltage_sc7280, ARRAY_SIZE(hs_crossover_voltage_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2, HS_CROSSOVER_VOLTAGE_MASK }, { "qcom,hs-output-impedance-micro-ohms", hs_output_impedance_sc7280, ARRAY_SIZE(hs_output_impedance_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X2, HS_OUTPUT_IMPEDANCE_MASK, }, { "qcom,ls-fs-output-impedance-bp", ls_fs_output_impedance_sc7280, ARRAY_SIZE(ls_fs_output_impedance_sc7280), USB2_PHY_USB_PHY_HS_PHY_OVERRIDE_X3, LS_FS_OUTPUT_IMPEDANCE_MASK, }, {}, }; static int qcom_snps_hsphy_init(struct phy *phy) { struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy); int ret, i; dev_vdbg(&phy->dev, "%s(): Initializing SNPS HS phy\n", __func__); ret = regulator_bulk_enable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs); if (ret) return ret; ret = clk_bulk_prepare_enable(hsphy->num_clks, hsphy->clks); if (ret) { dev_err(&phy->dev, "failed to enable clocks, %d\n", ret); goto poweroff_phy; } ret = reset_control_assert(hsphy->phy_reset); if (ret) { dev_err(&phy->dev, "failed to assert phy_reset, %d\n", ret); goto disable_clks; } usleep_range(100, 150); ret = reset_control_deassert(hsphy->phy_reset); if (ret) { dev_err(&phy->dev, "failed to de-assert phy_reset, %d\n", ret); goto disable_clks; } qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0, UTMI_PHY_CMN_CTRL_OVERRIDE_EN, UTMI_PHY_CMN_CTRL_OVERRIDE_EN); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5, POR, POR); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0, FSEL_MASK, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1, PLLBTUNE, PLLBTUNE); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_REFCLK_CTRL, REFCLK_SEL_DEFAULT, REFCLK_SEL_MASK); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON1, VBUSVLDEXTSEL0, VBUSVLDEXTSEL0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL1, VBUSVLDEXT0, VBUSVLDEXT0); for (i = 0; i < ARRAY_SIZE(hsphy->update_seq_cfg); i++) { if (hsphy->update_seq_cfg[i].need_update) qcom_snps_hsphy_write_mask(hsphy->base, hsphy->update_seq_cfg[i].offset, hsphy->update_seq_cfg[i].mask, hsphy->update_seq_cfg[i].value); } qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON2, VREGBYPASS, VREGBYPASS); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N, USB2_SUSPEND_N_SEL | USB2_SUSPEND_N); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL0, SLEEPM, SLEEPM); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL_COMMON0, SIDDQ, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_UTMI_CTRL5, POR, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_HS_PHY_CTRL2, USB2_SUSPEND_N_SEL, 0); qcom_snps_hsphy_write_mask(hsphy->base, USB2_PHY_USB_PHY_CFG0, UTMI_PHY_CMN_CTRL_OVERRIDE_EN, 0); hsphy->phy_initialized = true; return 0; disable_clks: clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks); poweroff_phy: regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs); return ret; } static int qcom_snps_hsphy_exit(struct phy *phy) { struct qcom_snps_hsphy *hsphy = phy_get_drvdata(phy); reset_control_assert(hsphy->phy_reset); clk_bulk_disable_unprepare(hsphy->num_clks, hsphy->clks); regulator_bulk_disable(ARRAY_SIZE(hsphy->vregs), hsphy->vregs); hsphy->phy_initialized = false; return 0; } static const struct phy_ops qcom_snps_hsphy_gen_ops = { .init = qcom_snps_hsphy_init, .exit = qcom_snps_hsphy_exit, .set_mode = qcom_snps_hsphy_set_mode, .owner = THIS_MODULE, }; static const struct of_device_id qcom_snps_hsphy_of_match_table[] = { { .compatible = "qcom,sm8150-usb-hs-phy", }, { .compatible = "qcom,usb-snps-hs-5nm-phy", }, { .compatible = "qcom,usb-snps-hs-7nm-phy", .data = &sc7280_snps_7nm_phy, }, { .compatible = "qcom,usb-snps-femto-v2-phy", }, { } }; MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_of_match_table); static const struct dev_pm_ops qcom_snps_hsphy_pm_ops = { SET_RUNTIME_PM_OPS(qcom_snps_hsphy_runtime_suspend, qcom_snps_hsphy_runtime_resume, NULL) }; static void qcom_snps_hsphy_override_param_update_val( const struct override_param_map map, s32 dt_val, struct phy_override_seq *seq_entry) { int i; /* * Param table for each param is in increasing order * of dt values. We need to iterate over the list to * select the entry that matches the dt value and pick * up the corresponding register value. */ for (i = 0; i < map.table_size - 1; i++) { if (map.param_table[i].value == dt_val) break; } seq_entry->need_update = true; seq_entry->offset = map.reg_offset; seq_entry->mask = map.param_mask; seq_entry->value = map.param_table[i].reg_val << __ffs(map.param_mask); } static void qcom_snps_hsphy_read_override_param_seq(struct device *dev) { struct device_node *node = dev->of_node; s32 val; int ret, i; struct qcom_snps_hsphy *hsphy; const struct override_param_map *cfg = of_device_get_match_data(dev); if (!cfg) return; hsphy = dev_get_drvdata(dev); for (i = 0; cfg[i].prop_name != NULL; i++) { ret = of_property_read_s32(node, cfg[i].prop_name, &val); if (ret) continue; qcom_snps_hsphy_override_param_update_val(cfg[i], val, &hsphy->update_seq_cfg[i]); dev_dbg(&hsphy->phy->dev, "Read param: %s dt_val: %d reg_val: 0x%x\n", cfg[i].prop_name, val, hsphy->update_seq_cfg[i].value); } } static int qcom_snps_hsphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct qcom_snps_hsphy *hsphy; struct phy_provider *phy_provider; struct phy *generic_phy; int ret, i; int num; hsphy = devm_kzalloc(dev, sizeof(*hsphy), GFP_KERNEL); if (!hsphy) return -ENOMEM; hsphy->dev = dev; hsphy->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(hsphy->base)) return PTR_ERR(hsphy->base); ret = qcom_snps_hsphy_clk_init(hsphy); if (ret) return dev_err_probe(dev, ret, "failed to initialize clocks\n"); hsphy->phy_reset = devm_reset_control_get_exclusive(&pdev->dev, NULL); if (IS_ERR(hsphy->phy_reset)) { dev_err(dev, "failed to get phy core reset\n"); return PTR_ERR(hsphy->phy_reset); } num = ARRAY_SIZE(hsphy->vregs); for (i = 0; i < num; i++) hsphy->vregs[i].supply = qcom_snps_hsphy_vreg_names[i]; ret = devm_regulator_bulk_get(dev, num, hsphy->vregs); if (ret) return dev_err_probe(dev, ret, "failed to get regulator supplies\n"); pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Prevent runtime pm from being ON by default. Users can enable * it using power/control in sysfs. */ pm_runtime_forbid(dev); generic_phy = devm_phy_create(dev, NULL, &qcom_snps_hsphy_gen_ops); if (IS_ERR(generic_phy)) { ret = PTR_ERR(generic_phy); dev_err(dev, "failed to create phy, %d\n", ret); return ret; } hsphy->phy = generic_phy; dev_set_drvdata(dev, hsphy); phy_set_drvdata(generic_phy, hsphy); qcom_snps_hsphy_read_override_param_seq(dev); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (!IS_ERR(phy_provider)) dev_dbg(dev, "Registered Qcom-SNPS HS phy\n"); else pm_runtime_disable(dev); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver qcom_snps_hsphy_driver = { .probe = qcom_snps_hsphy_probe, .driver = { .name = "qcom-snps-hs-femto-v2-phy", .pm = &qcom_snps_hsphy_pm_ops, .of_match_table = qcom_snps_hsphy_of_match_table, }, }; module_platform_driver(qcom_snps_hsphy_driver); MODULE_DESCRIPTION("Qualcomm SNPS FEMTO USB HS PHY V2 driver"); MODULE_LICENSE("GPL v2");