// SPDX-License-Identifier: GPL-2.0 /* * Data Access Monitor * * Author: SeongJae Park <sjpark@amazon.de> */ #define pr_fmt(fmt) "damon: " fmt #include <linux/damon.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #define CREATE_TRACE_POINTS #include <trace/events/damon.h> #ifdef CONFIG_DAMON_KUNIT_TEST #undef DAMON_MIN_REGION #define DAMON_MIN_REGION 1 #endif static DEFINE_MUTEX(damon_lock); static int nr_running_ctxs; static bool running_exclusive_ctxs; static DEFINE_MUTEX(damon_ops_lock); static struct damon_operations damon_registered_ops[NR_DAMON_OPS]; static struct kmem_cache *damon_region_cache __ro_after_init; /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */ static bool __damon_is_registered_ops(enum damon_ops_id id) { struct damon_operations empty_ops = {}; if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops))) return false; return true; } /** * damon_is_registered_ops() - Check if a given damon_operations is registered. * @id: Id of the damon_operations to check if registered. * * Return: true if the ops is set, false otherwise. */ bool damon_is_registered_ops(enum damon_ops_id id) { bool registered; if (id >= NR_DAMON_OPS) return false; mutex_lock(&damon_ops_lock); registered = __damon_is_registered_ops(id); mutex_unlock(&damon_ops_lock); return registered; } /** * damon_register_ops() - Register a monitoring operations set to DAMON. * @ops: monitoring operations set to register. * * This function registers a monitoring operations set of valid &struct * damon_operations->id so that others can find and use them later. * * Return: 0 on success, negative error code otherwise. */ int damon_register_ops(struct damon_operations *ops) { int err = 0; if (ops->id >= NR_DAMON_OPS) return -EINVAL; mutex_lock(&damon_ops_lock); /* Fail for already registered ops */ if (__damon_is_registered_ops(ops->id)) { err = -EINVAL; goto out; } damon_registered_ops[ops->id] = *ops; out: mutex_unlock(&damon_ops_lock); return err; } /** * damon_select_ops() - Select a monitoring operations to use with the context. * @ctx: monitoring context to use the operations. * @id: id of the registered monitoring operations to select. * * This function finds registered monitoring operations set of @id and make * @ctx to use it. * * Return: 0 on success, negative error code otherwise. */ int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id) { int err = 0; if (id >= NR_DAMON_OPS) return -EINVAL; mutex_lock(&damon_ops_lock); if (!__damon_is_registered_ops(id)) err = -EINVAL; else ctx->ops = damon_registered_ops[id]; mutex_unlock(&damon_ops_lock); return err; } /* * Construct a damon_region struct * * Returns the pointer to the new struct if success, or NULL otherwise */ struct damon_region *damon_new_region(unsigned long start, unsigned long end) { struct damon_region *region; region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL); if (!region) return NULL; region->ar.start = start; region->ar.end = end; region->nr_accesses = 0; INIT_LIST_HEAD(®ion->list); region->age = 0; region->last_nr_accesses = 0; return region; } void damon_add_region(struct damon_region *r, struct damon_target *t) { list_add_tail(&r->list, &t->regions_list); t->nr_regions++; } static void damon_del_region(struct damon_region *r, struct damon_target *t) { list_del(&r->list); t->nr_regions--; } static void damon_free_region(struct damon_region *r) { kmem_cache_free(damon_region_cache, r); } void damon_destroy_region(struct damon_region *r, struct damon_target *t) { damon_del_region(r, t); damon_free_region(r); } /* * Check whether a region is intersecting an address range * * Returns true if it is. */ static bool damon_intersect(struct damon_region *r, struct damon_addr_range *re) { return !(r->ar.end <= re->start || re->end <= r->ar.start); } /* * Fill holes in regions with new regions. */ static int damon_fill_regions_holes(struct damon_region *first, struct damon_region *last, struct damon_target *t) { struct damon_region *r = first; damon_for_each_region_from(r, t) { struct damon_region *next, *newr; if (r == last) break; next = damon_next_region(r); if (r->ar.end != next->ar.start) { newr = damon_new_region(r->ar.end, next->ar.start); if (!newr) return -ENOMEM; damon_insert_region(newr, r, next, t); } } return 0; } /* * damon_set_regions() - Set regions of a target for given address ranges. * @t: the given target. * @ranges: array of new monitoring target ranges. * @nr_ranges: length of @ranges. * * This function adds new regions to, or modify existing regions of a * monitoring target to fit in specific ranges. * * Return: 0 if success, or negative error code otherwise. */ int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges, unsigned int nr_ranges) { struct damon_region *r, *next; unsigned int i; int err; /* Remove regions which are not in the new ranges */ damon_for_each_region_safe(r, next, t) { for (i = 0; i < nr_ranges; i++) { if (damon_intersect(r, &ranges[i])) break; } if (i == nr_ranges) damon_destroy_region(r, t); } r = damon_first_region(t); /* Add new regions or resize existing regions to fit in the ranges */ for (i = 0; i < nr_ranges; i++) { struct damon_region *first = NULL, *last, *newr; struct damon_addr_range *range; range = &ranges[i]; /* Get the first/last regions intersecting with the range */ damon_for_each_region_from(r, t) { if (damon_intersect(r, range)) { if (!first) first = r; last = r; } if (r->ar.start >= range->end) break; } if (!first) { /* no region intersects with this range */ newr = damon_new_region( ALIGN_DOWN(range->start, DAMON_MIN_REGION), ALIGN(range->end, DAMON_MIN_REGION)); if (!newr) return -ENOMEM; damon_insert_region(newr, damon_prev_region(r), r, t); } else { /* resize intersecting regions to fit in this range */ first->ar.start = ALIGN_DOWN(range->start, DAMON_MIN_REGION); last->ar.end = ALIGN(range->end, DAMON_MIN_REGION); /* fill possible holes in the range */ err = damon_fill_regions_holes(first, last, t); if (err) return err; } } return 0; } /* initialize private fields of damos_quota and return the pointer */ static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota) { quota->total_charged_sz = 0; quota->total_charged_ns = 0; quota->esz = 0; quota->charged_sz = 0; quota->charged_from = 0; quota->charge_target_from = NULL; quota->charge_addr_from = 0; return quota; } struct damos *damon_new_scheme(struct damos_access_pattern *pattern, enum damos_action action, struct damos_quota *quota, struct damos_watermarks *wmarks) { struct damos *scheme; scheme = kmalloc(sizeof(*scheme), GFP_KERNEL); if (!scheme) return NULL; scheme->pattern = *pattern; scheme->action = action; scheme->stat = (struct damos_stat){}; INIT_LIST_HEAD(&scheme->list); scheme->quota = *(damos_quota_init_priv(quota)); scheme->wmarks = *wmarks; scheme->wmarks.activated = true; return scheme; } void damon_add_scheme(struct damon_ctx *ctx, struct damos *s) { list_add_tail(&s->list, &ctx->schemes); } static void damon_del_scheme(struct damos *s) { list_del(&s->list); } static void damon_free_scheme(struct damos *s) { kfree(s); } void damon_destroy_scheme(struct damos *s) { damon_del_scheme(s); damon_free_scheme(s); } /* * Construct a damon_target struct * * Returns the pointer to the new struct if success, or NULL otherwise */ struct damon_target *damon_new_target(void) { struct damon_target *t; t = kmalloc(sizeof(*t), GFP_KERNEL); if (!t) return NULL; t->pid = NULL; t->nr_regions = 0; INIT_LIST_HEAD(&t->regions_list); INIT_LIST_HEAD(&t->list); return t; } void damon_add_target(struct damon_ctx *ctx, struct damon_target *t) { list_add_tail(&t->list, &ctx->adaptive_targets); } bool damon_targets_empty(struct damon_ctx *ctx) { return list_empty(&ctx->adaptive_targets); } static void damon_del_target(struct damon_target *t) { list_del(&t->list); } void damon_free_target(struct damon_target *t) { struct damon_region *r, *next; damon_for_each_region_safe(r, next, t) damon_free_region(r); kfree(t); } void damon_destroy_target(struct damon_target *t) { damon_del_target(t); damon_free_target(t); } unsigned int damon_nr_regions(struct damon_target *t) { return t->nr_regions; } struct damon_ctx *damon_new_ctx(void) { struct damon_ctx *ctx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; ctx->attrs.sample_interval = 5 * 1000; ctx->attrs.aggr_interval = 100 * 1000; ctx->attrs.ops_update_interval = 60 * 1000 * 1000; ktime_get_coarse_ts64(&ctx->last_aggregation); ctx->last_ops_update = ctx->last_aggregation; mutex_init(&ctx->kdamond_lock); ctx->attrs.min_nr_regions = 10; ctx->attrs.max_nr_regions = 1000; INIT_LIST_HEAD(&ctx->adaptive_targets); INIT_LIST_HEAD(&ctx->schemes); return ctx; } static void damon_destroy_targets(struct damon_ctx *ctx) { struct damon_target *t, *next_t; if (ctx->ops.cleanup) { ctx->ops.cleanup(ctx); return; } damon_for_each_target_safe(t, next_t, ctx) damon_destroy_target(t); } void damon_destroy_ctx(struct damon_ctx *ctx) { struct damos *s, *next_s; damon_destroy_targets(ctx); damon_for_each_scheme_safe(s, next_s, ctx) damon_destroy_scheme(s); kfree(ctx); } /** * damon_set_attrs() - Set attributes for the monitoring. * @ctx: monitoring context * @attrs: monitoring attributes * * This function should not be called while the kdamond is running. * Every time interval is in micro-seconds. * * Return: 0 on success, negative error code otherwise. */ int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs) { if (attrs->min_nr_regions < 3) return -EINVAL; if (attrs->min_nr_regions > attrs->max_nr_regions) return -EINVAL; ctx->attrs = *attrs; return 0; } /** * damon_set_schemes() - Set data access monitoring based operation schemes. * @ctx: monitoring context * @schemes: array of the schemes * @nr_schemes: number of entries in @schemes * * This function should not be called while the kdamond of the context is * running. */ void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes, ssize_t nr_schemes) { struct damos *s, *next; ssize_t i; damon_for_each_scheme_safe(s, next, ctx) damon_destroy_scheme(s); for (i = 0; i < nr_schemes; i++) damon_add_scheme(ctx, schemes[i]); } /** * damon_nr_running_ctxs() - Return number of currently running contexts. */ int damon_nr_running_ctxs(void) { int nr_ctxs; mutex_lock(&damon_lock); nr_ctxs = nr_running_ctxs; mutex_unlock(&damon_lock); return nr_ctxs; } /* Returns the size upper limit for each monitoring region */ static unsigned long damon_region_sz_limit(struct damon_ctx *ctx) { struct damon_target *t; struct damon_region *r; unsigned long sz = 0; damon_for_each_target(t, ctx) { damon_for_each_region(r, t) sz += damon_sz_region(r); } if (ctx->attrs.min_nr_regions) sz /= ctx->attrs.min_nr_regions; if (sz < DAMON_MIN_REGION) sz = DAMON_MIN_REGION; return sz; } static int kdamond_fn(void *data); /* * __damon_start() - Starts monitoring with given context. * @ctx: monitoring context * * This function should be called while damon_lock is hold. * * Return: 0 on success, negative error code otherwise. */ static int __damon_start(struct damon_ctx *ctx) { int err = -EBUSY; mutex_lock(&ctx->kdamond_lock); if (!ctx->kdamond) { err = 0; ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d", nr_running_ctxs); if (IS_ERR(ctx->kdamond)) { err = PTR_ERR(ctx->kdamond); ctx->kdamond = NULL; } } mutex_unlock(&ctx->kdamond_lock); return err; } /** * damon_start() - Starts the monitorings for a given group of contexts. * @ctxs: an array of the pointers for contexts to start monitoring * @nr_ctxs: size of @ctxs * @exclusive: exclusiveness of this contexts group * * This function starts a group of monitoring threads for a group of monitoring * contexts. One thread per each context is created and run in parallel. The * caller should handle synchronization between the threads by itself. If * @exclusive is true and a group of threads that created by other * 'damon_start()' call is currently running, this function does nothing but * returns -EBUSY. * * Return: 0 on success, negative error code otherwise. */ int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive) { int i; int err = 0; mutex_lock(&damon_lock); if ((exclusive && nr_running_ctxs) || (!exclusive && running_exclusive_ctxs)) { mutex_unlock(&damon_lock); return -EBUSY; } for (i = 0; i < nr_ctxs; i++) { err = __damon_start(ctxs[i]); if (err) break; nr_running_ctxs++; } if (exclusive && nr_running_ctxs) running_exclusive_ctxs = true; mutex_unlock(&damon_lock); return err; } /* * __damon_stop() - Stops monitoring of a given context. * @ctx: monitoring context * * Return: 0 on success, negative error code otherwise. */ static int __damon_stop(struct damon_ctx *ctx) { struct task_struct *tsk; mutex_lock(&ctx->kdamond_lock); tsk = ctx->kdamond; if (tsk) { get_task_struct(tsk); mutex_unlock(&ctx->kdamond_lock); kthread_stop(tsk); put_task_struct(tsk); return 0; } mutex_unlock(&ctx->kdamond_lock); return -EPERM; } /** * damon_stop() - Stops the monitorings for a given group of contexts. * @ctxs: an array of the pointers for contexts to stop monitoring * @nr_ctxs: size of @ctxs * * Return: 0 on success, negative error code otherwise. */ int damon_stop(struct damon_ctx **ctxs, int nr_ctxs) { int i, err = 0; for (i = 0; i < nr_ctxs; i++) { /* nr_running_ctxs is decremented in kdamond_fn */ err = __damon_stop(ctxs[i]); if (err) break; } return err; } /* * damon_check_reset_time_interval() - Check if a time interval is elapsed. * @baseline: the time to check whether the interval has elapsed since * @interval: the time interval (microseconds) * * See whether the given time interval has passed since the given baseline * time. If so, it also updates the baseline to current time for next check. * * Return: true if the time interval has passed, or false otherwise. */ static bool damon_check_reset_time_interval(struct timespec64 *baseline, unsigned long interval) { struct timespec64 now; ktime_get_coarse_ts64(&now); if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) < interval * 1000) return false; *baseline = now; return true; } /* * Check whether it is time to flush the aggregated information */ static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx) { return damon_check_reset_time_interval(&ctx->last_aggregation, ctx->attrs.aggr_interval); } /* * Reset the aggregated monitoring results ('nr_accesses' of each region). */ static void kdamond_reset_aggregated(struct damon_ctx *c) { struct damon_target *t; unsigned int ti = 0; /* target's index */ damon_for_each_target(t, c) { struct damon_region *r; damon_for_each_region(r, t) { trace_damon_aggregated(t, ti, r, damon_nr_regions(t)); r->last_nr_accesses = r->nr_accesses; r->nr_accesses = 0; } ti++; } } static void damon_split_region_at(struct damon_target *t, struct damon_region *r, unsigned long sz_r); static bool __damos_valid_target(struct damon_region *r, struct damos *s) { unsigned long sz; sz = damon_sz_region(r); return s->pattern.min_sz_region <= sz && sz <= s->pattern.max_sz_region && s->pattern.min_nr_accesses <= r->nr_accesses && r->nr_accesses <= s->pattern.max_nr_accesses && s->pattern.min_age_region <= r->age && r->age <= s->pattern.max_age_region; } static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t, struct damon_region *r, struct damos *s) { bool ret = __damos_valid_target(r, s); if (!ret || !s->quota.esz || !c->ops.get_scheme_score) return ret; return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score; } static void damon_do_apply_schemes(struct damon_ctx *c, struct damon_target *t, struct damon_region *r) { struct damos *s; damon_for_each_scheme(s, c) { struct damos_quota *quota = &s->quota; unsigned long sz = damon_sz_region(r); struct timespec64 begin, end; unsigned long sz_applied = 0; if (!s->wmarks.activated) continue; /* Check the quota */ if (quota->esz && quota->charged_sz >= quota->esz) continue; /* Skip previously charged regions */ if (quota->charge_target_from) { if (t != quota->charge_target_from) continue; if (r == damon_last_region(t)) { quota->charge_target_from = NULL; quota->charge_addr_from = 0; continue; } if (quota->charge_addr_from && r->ar.end <= quota->charge_addr_from) continue; if (quota->charge_addr_from && r->ar.start < quota->charge_addr_from) { sz = ALIGN_DOWN(quota->charge_addr_from - r->ar.start, DAMON_MIN_REGION); if (!sz) { if (damon_sz_region(r) <= DAMON_MIN_REGION) continue; sz = DAMON_MIN_REGION; } damon_split_region_at(t, r, sz); r = damon_next_region(r); sz = damon_sz_region(r); } quota->charge_target_from = NULL; quota->charge_addr_from = 0; } if (!damos_valid_target(c, t, r, s)) continue; /* Apply the scheme */ if (c->ops.apply_scheme) { if (quota->esz && quota->charged_sz + sz > quota->esz) { sz = ALIGN_DOWN(quota->esz - quota->charged_sz, DAMON_MIN_REGION); if (!sz) goto update_stat; damon_split_region_at(t, r, sz); } ktime_get_coarse_ts64(&begin); sz_applied = c->ops.apply_scheme(c, t, r, s); ktime_get_coarse_ts64(&end); quota->total_charged_ns += timespec64_to_ns(&end) - timespec64_to_ns(&begin); quota->charged_sz += sz; if (quota->esz && quota->charged_sz >= quota->esz) { quota->charge_target_from = t; quota->charge_addr_from = r->ar.end + 1; } } if (s->action != DAMOS_STAT) r->age = 0; update_stat: s->stat.nr_tried++; s->stat.sz_tried += sz; if (sz_applied) s->stat.nr_applied++; s->stat.sz_applied += sz_applied; } } /* Shouldn't be called if quota->ms and quota->sz are zero */ static void damos_set_effective_quota(struct damos_quota *quota) { unsigned long throughput; unsigned long esz; if (!quota->ms) { quota->esz = quota->sz; return; } if (quota->total_charged_ns) throughput = quota->total_charged_sz * 1000000 / quota->total_charged_ns; else throughput = PAGE_SIZE * 1024; esz = throughput * quota->ms; if (quota->sz && quota->sz < esz) esz = quota->sz; quota->esz = esz; } static void kdamond_apply_schemes(struct damon_ctx *c) { struct damon_target *t; struct damon_region *r, *next_r; struct damos *s; damon_for_each_scheme(s, c) { struct damos_quota *quota = &s->quota; unsigned long cumulated_sz; unsigned int score, max_score = 0; if (!s->wmarks.activated) continue; if (!quota->ms && !quota->sz) continue; /* New charge window starts */ if (time_after_eq(jiffies, quota->charged_from + msecs_to_jiffies( quota->reset_interval))) { if (quota->esz && quota->charged_sz >= quota->esz) s->stat.qt_exceeds++; quota->total_charged_sz += quota->charged_sz; quota->charged_from = jiffies; quota->charged_sz = 0; damos_set_effective_quota(quota); } if (!c->ops.get_scheme_score) continue; /* Fill up the score histogram */ memset(quota->histogram, 0, sizeof(quota->histogram)); damon_for_each_target(t, c) { damon_for_each_region(r, t) { if (!__damos_valid_target(r, s)) continue; score = c->ops.get_scheme_score( c, t, r, s); quota->histogram[score] += damon_sz_region(r); if (score > max_score) max_score = score; } } /* Set the min score limit */ for (cumulated_sz = 0, score = max_score; ; score--) { cumulated_sz += quota->histogram[score]; if (cumulated_sz >= quota->esz || !score) break; } quota->min_score = score; } damon_for_each_target(t, c) { damon_for_each_region_safe(r, next_r, t) damon_do_apply_schemes(c, t, r); } } /* * Merge two adjacent regions into one region */ static void damon_merge_two_regions(struct damon_target *t, struct damon_region *l, struct damon_region *r) { unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r); l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) / (sz_l + sz_r); l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r); l->ar.end = r->ar.end; damon_destroy_region(r, t); } /* * Merge adjacent regions having similar access frequencies * * t target affected by this merge operation * thres '->nr_accesses' diff threshold for the merge * sz_limit size upper limit of each region */ static void damon_merge_regions_of(struct damon_target *t, unsigned int thres, unsigned long sz_limit) { struct damon_region *r, *prev = NULL, *next; damon_for_each_region_safe(r, next, t) { if (abs(r->nr_accesses - r->last_nr_accesses) > thres) r->age = 0; else r->age++; if (prev && prev->ar.end == r->ar.start && abs(prev->nr_accesses - r->nr_accesses) <= thres && damon_sz_region(prev) + damon_sz_region(r) <= sz_limit) damon_merge_two_regions(t, prev, r); else prev = r; } } /* * Merge adjacent regions having similar access frequencies * * threshold '->nr_accesses' diff threshold for the merge * sz_limit size upper limit of each region * * This function merges monitoring target regions which are adjacent and their * access frequencies are similar. This is for minimizing the monitoring * overhead under the dynamically changeable access pattern. If a merge was * unnecessarily made, later 'kdamond_split_regions()' will revert it. */ static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold, unsigned long sz_limit) { struct damon_target *t; damon_for_each_target(t, c) damon_merge_regions_of(t, threshold, sz_limit); } /* * Split a region in two * * r the region to be split * sz_r size of the first sub-region that will be made */ static void damon_split_region_at(struct damon_target *t, struct damon_region *r, unsigned long sz_r) { struct damon_region *new; new = damon_new_region(r->ar.start + sz_r, r->ar.end); if (!new) return; r->ar.end = new->ar.start; new->age = r->age; new->last_nr_accesses = r->last_nr_accesses; damon_insert_region(new, r, damon_next_region(r), t); } /* Split every region in the given target into 'nr_subs' regions */ static void damon_split_regions_of(struct damon_target *t, int nr_subs) { struct damon_region *r, *next; unsigned long sz_region, sz_sub = 0; int i; damon_for_each_region_safe(r, next, t) { sz_region = damon_sz_region(r); for (i = 0; i < nr_subs - 1 && sz_region > 2 * DAMON_MIN_REGION; i++) { /* * Randomly select size of left sub-region to be at * least 10 percent and at most 90% of original region */ sz_sub = ALIGN_DOWN(damon_rand(1, 10) * sz_region / 10, DAMON_MIN_REGION); /* Do not allow blank region */ if (sz_sub == 0 || sz_sub >= sz_region) continue; damon_split_region_at(t, r, sz_sub); sz_region = sz_sub; } } } /* * Split every target region into randomly-sized small regions * * This function splits every target region into random-sized small regions if * current total number of the regions is equal or smaller than half of the * user-specified maximum number of regions. This is for maximizing the * monitoring accuracy under the dynamically changeable access patterns. If a * split was unnecessarily made, later 'kdamond_merge_regions()' will revert * it. */ static void kdamond_split_regions(struct damon_ctx *ctx) { struct damon_target *t; unsigned int nr_regions = 0; static unsigned int last_nr_regions; int nr_subregions = 2; damon_for_each_target(t, ctx) nr_regions += damon_nr_regions(t); if (nr_regions > ctx->attrs.max_nr_regions / 2) return; /* Maybe the middle of the region has different access frequency */ if (last_nr_regions == nr_regions && nr_regions < ctx->attrs.max_nr_regions / 3) nr_subregions = 3; damon_for_each_target(t, ctx) damon_split_regions_of(t, nr_subregions); last_nr_regions = nr_regions; } /* * Check whether it is time to check and apply the operations-related data * structures. * * Returns true if it is. */ static bool kdamond_need_update_operations(struct damon_ctx *ctx) { return damon_check_reset_time_interval(&ctx->last_ops_update, ctx->attrs.ops_update_interval); } /* * Check whether current monitoring should be stopped * * The monitoring is stopped when either the user requested to stop, or all * monitoring targets are invalid. * * Returns true if need to stop current monitoring. */ static bool kdamond_need_stop(struct damon_ctx *ctx) { struct damon_target *t; if (kthread_should_stop()) return true; if (!ctx->ops.target_valid) return false; damon_for_each_target(t, ctx) { if (ctx->ops.target_valid(t)) return false; } return true; } static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric) { struct sysinfo i; switch (metric) { case DAMOS_WMARK_FREE_MEM_RATE: si_meminfo(&i); return i.freeram * 1000 / i.totalram; default: break; } return -EINVAL; } /* * Returns zero if the scheme is active. Else, returns time to wait for next * watermark check in micro-seconds. */ static unsigned long damos_wmark_wait_us(struct damos *scheme) { unsigned long metric; if (scheme->wmarks.metric == DAMOS_WMARK_NONE) return 0; metric = damos_wmark_metric_value(scheme->wmarks.metric); /* higher than high watermark or lower than low watermark */ if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) { if (scheme->wmarks.activated) pr_debug("deactivate a scheme (%d) for %s wmark\n", scheme->action, metric > scheme->wmarks.high ? "high" : "low"); scheme->wmarks.activated = false; return scheme->wmarks.interval; } /* inactive and higher than middle watermark */ if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) && !scheme->wmarks.activated) return scheme->wmarks.interval; if (!scheme->wmarks.activated) pr_debug("activate a scheme (%d)\n", scheme->action); scheme->wmarks.activated = true; return 0; } static void kdamond_usleep(unsigned long usecs) { /* See Documentation/timers/timers-howto.rst for the thresholds */ if (usecs > 20 * USEC_PER_MSEC) schedule_timeout_idle(usecs_to_jiffies(usecs)); else usleep_idle_range(usecs, usecs + 1); } /* Returns negative error code if it's not activated but should return */ static int kdamond_wait_activation(struct damon_ctx *ctx) { struct damos *s; unsigned long wait_time; unsigned long min_wait_time = 0; bool init_wait_time = false; while (!kdamond_need_stop(ctx)) { damon_for_each_scheme(s, ctx) { wait_time = damos_wmark_wait_us(s); if (!init_wait_time || wait_time < min_wait_time) { init_wait_time = true; min_wait_time = wait_time; } } if (!min_wait_time) return 0; kdamond_usleep(min_wait_time); if (ctx->callback.after_wmarks_check && ctx->callback.after_wmarks_check(ctx)) break; } return -EBUSY; } /* * The monitoring daemon that runs as a kernel thread */ static int kdamond_fn(void *data) { struct damon_ctx *ctx = data; struct damon_target *t; struct damon_region *r, *next; unsigned int max_nr_accesses = 0; unsigned long sz_limit = 0; pr_debug("kdamond (%d) starts\n", current->pid); if (ctx->ops.init) ctx->ops.init(ctx); if (ctx->callback.before_start && ctx->callback.before_start(ctx)) goto done; sz_limit = damon_region_sz_limit(ctx); while (!kdamond_need_stop(ctx)) { if (kdamond_wait_activation(ctx)) break; if (ctx->ops.prepare_access_checks) ctx->ops.prepare_access_checks(ctx); if (ctx->callback.after_sampling && ctx->callback.after_sampling(ctx)) break; kdamond_usleep(ctx->attrs.sample_interval); if (ctx->ops.check_accesses) max_nr_accesses = ctx->ops.check_accesses(ctx); if (kdamond_aggregate_interval_passed(ctx)) { kdamond_merge_regions(ctx, max_nr_accesses / 10, sz_limit); if (ctx->callback.after_aggregation && ctx->callback.after_aggregation(ctx)) break; kdamond_apply_schemes(ctx); kdamond_reset_aggregated(ctx); kdamond_split_regions(ctx); if (ctx->ops.reset_aggregated) ctx->ops.reset_aggregated(ctx); } if (kdamond_need_update_operations(ctx)) { if (ctx->ops.update) ctx->ops.update(ctx); sz_limit = damon_region_sz_limit(ctx); } } done: damon_for_each_target(t, ctx) { damon_for_each_region_safe(r, next, t) damon_destroy_region(r, t); } if (ctx->callback.before_terminate) ctx->callback.before_terminate(ctx); if (ctx->ops.cleanup) ctx->ops.cleanup(ctx); pr_debug("kdamond (%d) finishes\n", current->pid); mutex_lock(&ctx->kdamond_lock); ctx->kdamond = NULL; mutex_unlock(&ctx->kdamond_lock); mutex_lock(&damon_lock); nr_running_ctxs--; if (!nr_running_ctxs && running_exclusive_ctxs) running_exclusive_ctxs = false; mutex_unlock(&damon_lock); return 0; } /* * struct damon_system_ram_region - System RAM resource address region of * [@start, @end). * @start: Start address of the region (inclusive). * @end: End address of the region (exclusive). */ struct damon_system_ram_region { unsigned long start; unsigned long end; }; static int walk_system_ram(struct resource *res, void *arg) { struct damon_system_ram_region *a = arg; if (a->end - a->start < resource_size(res)) { a->start = res->start; a->end = res->end; } return 0; } /* * Find biggest 'System RAM' resource and store its start and end address in * @start and @end, respectively. If no System RAM is found, returns false. */ static bool damon_find_biggest_system_ram(unsigned long *start, unsigned long *end) { struct damon_system_ram_region arg = {}; walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram); if (arg.end <= arg.start) return false; *start = arg.start; *end = arg.end; return true; } /** * damon_set_region_biggest_system_ram_default() - Set the region of the given * monitoring target as requested, or biggest 'System RAM'. * @t: The monitoring target to set the region. * @start: The pointer to the start address of the region. * @end: The pointer to the end address of the region. * * This function sets the region of @t as requested by @start and @end. If the * values of @start and @end are zero, however, this function finds the biggest * 'System RAM' resource and sets the region to cover the resource. In the * latter case, this function saves the start and end addresses of the resource * in @start and @end, respectively. * * Return: 0 on success, negative error code otherwise. */ int damon_set_region_biggest_system_ram_default(struct damon_target *t, unsigned long *start, unsigned long *end) { struct damon_addr_range addr_range; if (*start > *end) return -EINVAL; if (!*start && !*end && !damon_find_biggest_system_ram(start, end)) return -EINVAL; addr_range.start = *start; addr_range.end = *end; return damon_set_regions(t, &addr_range, 1); } static int __init damon_init(void) { damon_region_cache = KMEM_CACHE(damon_region, 0); if (unlikely(!damon_region_cache)) { pr_err("creating damon_region_cache fails\n"); return -ENOMEM; } return 0; } subsys_initcall(damon_init); #include "core-test.h"