// SPDX-License-Identifier: GPL-2.0+ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #define RTMV20_REG_DEVINFO 0x00 #define RTMV20_REG_PULSEDELAY 0x01 #define RTMV20_REG_PULSEWIDTH 0x03 #define RTMV20_REG_LDCTRL1 0x05 #define RTMV20_REG_ESPULSEWIDTH 0x06 #define RTMV20_REG_ESLDCTRL1 0x08 #define RTMV20_REG_LBP 0x0A #define RTMV20_REG_LDCTRL2 0x0B #define RTMV20_REG_FSIN1CTRL1 0x0D #define RTMV20_REG_FSIN1CTRL3 0x0F #define RTMV20_REG_FSIN2CTRL1 0x10 #define RTMV20_REG_FSIN2CTRL3 0x12 #define RTMV20_REG_ENCTRL 0x13 #define RTMV20_REG_STRBVSYNDLYL 0x29 #define RTMV20_REG_LDIRQ 0x30 #define RTMV20_REG_LDSTAT 0x40 #define RTMV20_REG_LDMASK 0x50 #define RTMV20_MAX_REGS (RTMV20_REG_LDMASK + 1) #define RTMV20_VID_MASK GENMASK(7, 4) #define RICHTEK_VID 0x80 #define RTMV20_LDCURR_MASK GENMASK(7, 0) #define RTMV20_DELAY_MASK GENMASK(9, 0) #define RTMV20_WIDTH_MASK GENMASK(13, 0) #define RTMV20_WIDTH2_MASK GENMASK(7, 0) #define RTMV20_LBPLVL_MASK GENMASK(3, 0) #define RTMV20_LBPEN_MASK BIT(7) #define RTMV20_STROBEPOL_MASK BIT(0) #define RTMV20_VSYNPOL_MASK BIT(1) #define RTMV20_FSINEN_MASK BIT(7) #define RTMV20_ESEN_MASK BIT(6) #define RTMV20_FSINOUT_MASK BIT(2) #define LDENABLE_MASK (BIT(3) | BIT(0)) #define OTPEVT_MASK BIT(4) #define SHORTEVT_MASK BIT(3) #define OPENEVT_MASK BIT(2) #define LBPEVT_MASK BIT(1) #define OCPEVT_MASK BIT(0) #define FAILEVT_MASK (SHORTEVT_MASK | OPENEVT_MASK | LBPEVT_MASK) #define RTMV20_LSW_MINUA 0 #define RTMV20_LSW_MAXUA 6000000 #define RTMV20_LSW_STEPUA 30000 #define RTMV20_LSW_DEFAULTUA 3000000 #define RTMV20_I2CRDY_TIMEUS 200 #define RTMV20_CSRDY_TIMEUS 2000 struct rtmv20_priv { struct device *dev; struct regmap *regmap; struct gpio_desc *enable_gpio; struct regulator_dev *rdev; }; static int rtmv20_lsw_enable(struct regulator_dev *rdev) { struct rtmv20_priv *priv = rdev_get_drvdata(rdev); int ret; gpiod_set_value(priv->enable_gpio, 1); /* Wait for I2C can be accessed */ usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100); /* HW re-enable, disable cache only and sync regcache here */ regcache_cache_only(priv->regmap, false); ret = regcache_sync(priv->regmap); if (ret) return ret; return regulator_enable_regmap(rdev); } static int rtmv20_lsw_disable(struct regulator_dev *rdev) { struct rtmv20_priv *priv = rdev_get_drvdata(rdev); int ret; ret = regulator_disable_regmap(rdev); if (ret) return ret; /* Mark the regcache as dirty and cache only before HW disabled */ regcache_cache_only(priv->regmap, true); regcache_mark_dirty(priv->regmap); gpiod_set_value(priv->enable_gpio, 0); return 0; } static int rtmv20_lsw_set_current_limit(struct regulator_dev *rdev, int min_uA, int max_uA) { int sel; if (min_uA > RTMV20_LSW_MAXUA || max_uA < RTMV20_LSW_MINUA) return -EINVAL; if (max_uA > RTMV20_LSW_MAXUA) max_uA = RTMV20_LSW_MAXUA; sel = (max_uA - RTMV20_LSW_MINUA) / RTMV20_LSW_STEPUA; /* Ensure the selected setting is still in range */ if ((sel * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA) < min_uA) return -EINVAL; sel <<= ffs(rdev->desc->csel_mask) - 1; return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg, rdev->desc->csel_mask, sel); } static int rtmv20_lsw_get_current_limit(struct regulator_dev *rdev) { unsigned int val; int ret; ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val); if (ret) return ret; val &= rdev->desc->csel_mask; val >>= ffs(rdev->desc->csel_mask) - 1; return val * RTMV20_LSW_STEPUA + RTMV20_LSW_MINUA; } static const struct regulator_ops rtmv20_regulator_ops = { .set_current_limit = rtmv20_lsw_set_current_limit, .get_current_limit = rtmv20_lsw_get_current_limit, .enable = rtmv20_lsw_enable, .disable = rtmv20_lsw_disable, .is_enabled = regulator_is_enabled_regmap, }; static const struct regulator_desc rtmv20_lsw_desc = { .name = "rtmv20,lsw", .of_match = of_match_ptr("lsw"), .type = REGULATOR_CURRENT, .owner = THIS_MODULE, .ops = &rtmv20_regulator_ops, .csel_reg = RTMV20_REG_LDCTRL1, .csel_mask = RTMV20_LDCURR_MASK, .enable_reg = RTMV20_REG_ENCTRL, .enable_mask = LDENABLE_MASK, .enable_time = RTMV20_CSRDY_TIMEUS, }; static irqreturn_t rtmv20_irq_handler(int irq, void *data) { struct rtmv20_priv *priv = data; unsigned int val; int ret; ret = regmap_read(priv->regmap, RTMV20_REG_LDIRQ, &val); if (ret) { dev_err(priv->dev, "Failed to get irq flags\n"); return IRQ_NONE; } if (val & OTPEVT_MASK) regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_TEMP, NULL); if (val & OCPEVT_MASK) regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_OVER_CURRENT, NULL); if (val & FAILEVT_MASK) regulator_notifier_call_chain(priv->rdev, REGULATOR_EVENT_FAIL, NULL); return IRQ_HANDLED; } static u32 clamp_to_selector(u32 val, u32 min, u32 max, u32 step) { u32 retval = clamp_val(val, min, max); return (retval - min) / step; } static int rtmv20_properties_init(struct rtmv20_priv *priv) { const struct { const char *name; u32 def; u32 min; u32 max; u32 step; u32 addr; u32 mask; } props[] = { { "richtek,ld-pulse-delay-us", 0, 0, 100000, 100, RTMV20_REG_PULSEDELAY, RTMV20_DELAY_MASK }, { "richtek,ld-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_PULSEWIDTH, RTMV20_WIDTH_MASK }, { "richtek,fsin1-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN1CTRL1, RTMV20_DELAY_MASK }, { "richtek,fsin1-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN1CTRL3, RTMV20_WIDTH2_MASK }, { "richtek,fsin2-delay-us", 23000, 0, 100000, 100, RTMV20_REG_FSIN2CTRL1, RTMV20_DELAY_MASK }, { "richtek,fsin2-width-us", 160, 40, 10000, 40, RTMV20_REG_FSIN2CTRL3, RTMV20_WIDTH2_MASK }, { "richtek,es-pulse-width-us", 1200, 0, 10000, 1, RTMV20_REG_ESPULSEWIDTH, RTMV20_WIDTH_MASK }, { "richtek,es-ld-current-microamp", 3000000, 0, 6000000, 30000, RTMV20_REG_ESLDCTRL1, RTMV20_LDCURR_MASK }, { "richtek,lbp-level-microvolt", 2700000, 2400000, 3700000, 100000, RTMV20_REG_LBP, RTMV20_LBPLVL_MASK }, { "richtek,lbp-enable", 0, 0, 1, 1, RTMV20_REG_LBP, RTMV20_LBPEN_MASK }, { "richtek,strobe-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2, RTMV20_STROBEPOL_MASK }, { "richtek,vsync-polarity-high", 1, 0, 1, 1, RTMV20_REG_LDCTRL2, RTMV20_VSYNPOL_MASK }, { "richtek,fsin-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINEN_MASK }, { "richtek,fsin-output", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_FSINOUT_MASK }, { "richtek,es-enable", 0, 0, 1, 1, RTMV20_REG_ENCTRL, RTMV20_ESEN_MASK }, }; int i, ret; for (i = 0; i < ARRAY_SIZE(props); i++) { __be16 bval16; u16 val16; u32 temp; int significant_bit = fls(props[i].mask); int shift = ffs(props[i].mask) - 1; if (props[i].max > 1) { ret = device_property_read_u32(priv->dev, props[i].name, &temp); if (ret) temp = props[i].def; } else temp = device_property_read_bool(priv->dev, props[i].name); temp = clamp_to_selector(temp, props[i].min, props[i].max, props[i].step); /* If significant bit is over 8, two byte access, others one */ if (significant_bit > 8) { ret = regmap_raw_read(priv->regmap, props[i].addr, &bval16, sizeof(bval16)); if (ret) return ret; val16 = be16_to_cpu(bval16); val16 &= ~props[i].mask; val16 |= (temp << shift); bval16 = cpu_to_be16(val16); ret = regmap_raw_write(priv->regmap, props[i].addr, &bval16, sizeof(bval16)); } else { ret = regmap_update_bits(priv->regmap, props[i].addr, props[i].mask, temp << shift); } if (ret) return ret; } return 0; } static int rtmv20_check_chip_exist(struct rtmv20_priv *priv) { unsigned int val; int ret; ret = regmap_read(priv->regmap, RTMV20_REG_DEVINFO, &val); if (ret) return ret; if ((val & RTMV20_VID_MASK) != RICHTEK_VID) return -ENODEV; return 0; } static bool rtmv20_is_accessible_reg(struct device *dev, unsigned int reg) { switch (reg) { case RTMV20_REG_DEVINFO ... RTMV20_REG_STRBVSYNDLYL: case RTMV20_REG_LDIRQ: case RTMV20_REG_LDSTAT: case RTMV20_REG_LDMASK: return true; } return false; } static bool rtmv20_is_volatile_reg(struct device *dev, unsigned int reg) { if (reg == RTMV20_REG_LDIRQ || reg == RTMV20_REG_LDSTAT) return true; return false; } static const struct regmap_config rtmv20_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_RBTREE, .max_register = RTMV20_REG_LDMASK, .num_reg_defaults_raw = RTMV20_MAX_REGS, .writeable_reg = rtmv20_is_accessible_reg, .readable_reg = rtmv20_is_accessible_reg, .volatile_reg = rtmv20_is_volatile_reg, }; static int rtmv20_probe(struct i2c_client *i2c) { struct rtmv20_priv *priv; struct regulator_config config = {}; int ret; priv = devm_kzalloc(&i2c->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = &i2c->dev; /* Before regmap register, configure HW enable to make I2C accessible */ priv->enable_gpio = devm_gpiod_get(&i2c->dev, "enable", GPIOD_OUT_HIGH); if (IS_ERR(priv->enable_gpio)) { dev_err(&i2c->dev, "Failed to get enable gpio\n"); return PTR_ERR(priv->enable_gpio); } /* Wait for I2C can be accessed */ usleep_range(RTMV20_I2CRDY_TIMEUS, RTMV20_I2CRDY_TIMEUS + 100); priv->regmap = devm_regmap_init_i2c(i2c, &rtmv20_regmap_config); if (IS_ERR(priv->regmap)) { dev_err(&i2c->dev, "Failed to allocate register map\n"); return PTR_ERR(priv->regmap); } ret = rtmv20_check_chip_exist(priv); if (ret) { dev_err(&i2c->dev, "Chip vendor info is not matched\n"); return ret; } ret = rtmv20_properties_init(priv); if (ret) { dev_err(&i2c->dev, "Failed to init properties\n"); return ret; } /* * keep in shutdown mode to minimize the current consumption * and also mark regcache as dirty */ regcache_cache_only(priv->regmap, true); regcache_mark_dirty(priv->regmap); gpiod_set_value(priv->enable_gpio, 0); config.dev = &i2c->dev; config.regmap = priv->regmap; config.driver_data = priv; priv->rdev = devm_regulator_register(&i2c->dev, &rtmv20_lsw_desc, &config); if (IS_ERR(priv->rdev)) { dev_err(&i2c->dev, "Failed to register regulator\n"); return PTR_ERR(priv->rdev); } /* Unmask all events before IRQ registered */ ret = regmap_write(priv->regmap, RTMV20_REG_LDMASK, 0); if (ret) return ret; return devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL, rtmv20_irq_handler, IRQF_ONESHOT, dev_name(&i2c->dev), priv); } static int __maybe_unused rtmv20_suspend(struct device *dev) { struct i2c_client *i2c = to_i2c_client(dev); /* * When system suspend, disable irq to prevent interrupt trigger * during I2C bus suspend */ disable_irq(i2c->irq); if (device_may_wakeup(dev)) enable_irq_wake(i2c->irq); return 0; } static int __maybe_unused rtmv20_resume(struct device *dev) { struct i2c_client *i2c = to_i2c_client(dev); /* Enable irq after I2C bus already resume */ enable_irq(i2c->irq); if (device_may_wakeup(dev)) disable_irq_wake(i2c->irq); return 0; } static SIMPLE_DEV_PM_OPS(rtmv20_pm, rtmv20_suspend, rtmv20_resume); static const struct of_device_id __maybe_unused rtmv20_of_id[] = { { .compatible = "richtek,rtmv20", }, {} }; MODULE_DEVICE_TABLE(of, rtmv20_of_id); static struct i2c_driver rtmv20_driver = { .driver = { .name = "rtmv20", .of_match_table = of_match_ptr(rtmv20_of_id), .pm = &rtmv20_pm, }, .probe_new = rtmv20_probe, }; module_i2c_driver(rtmv20_driver); MODULE_AUTHOR("ChiYuan Huang <cy_huang@richtek.com>"); MODULE_DESCRIPTION("Richtek RTMV20 Regulator Driver"); MODULE_LICENSE("GPL v2");