// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2008 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/if_ether.h> #include <linux/slab.h> #include "vnic_resource.h" #include "vnic_devcmd.h" #include "vnic_dev.h" #include "vnic_stats.h" #include "vnic_wq.h" struct devcmd2_controller { struct vnic_wq_ctrl *wq_ctrl; struct vnic_dev_ring results_ring; struct vnic_wq wq; struct vnic_devcmd2 *cmd_ring; struct devcmd2_result *result; u16 next_result; u16 result_size; int color; }; enum vnic_proxy_type { PROXY_NONE, PROXY_BY_BDF, PROXY_BY_INDEX, }; struct vnic_res { void __iomem *vaddr; unsigned int count; }; struct vnic_dev { void *priv; struct pci_dev *pdev; struct vnic_res res[RES_TYPE_MAX]; enum vnic_dev_intr_mode intr_mode; struct vnic_devcmd __iomem *devcmd; struct vnic_devcmd_notify *notify; struct vnic_devcmd_notify notify_copy; dma_addr_t notify_pa; u32 *linkstatus; dma_addr_t linkstatus_pa; struct vnic_stats *stats; dma_addr_t stats_pa; struct vnic_devcmd_fw_info *fw_info; dma_addr_t fw_info_pa; enum vnic_proxy_type proxy; u32 proxy_index; u64 args[VNIC_DEVCMD_NARGS]; struct devcmd2_controller *devcmd2; int (*devcmd_rtn)(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, int wait); }; #define VNIC_MAX_RES_HDR_SIZE \ (sizeof(struct vnic_resource_header) + \ sizeof(struct vnic_resource) * RES_TYPE_MAX) #define VNIC_RES_STRIDE 128 void *vnic_dev_priv(struct vnic_dev *vdev) { return vdev->priv; } static int vnic_dev_discover_res(struct vnic_dev *vdev, struct vnic_dev_bar *bar) { struct vnic_resource_header __iomem *rh; struct vnic_resource __iomem *r; u8 type; if (bar->len < VNIC_MAX_RES_HDR_SIZE) { printk(KERN_ERR "vNIC BAR0 res hdr length error\n"); return -EINVAL; } rh = bar->vaddr; if (!rh) { printk(KERN_ERR "vNIC BAR0 res hdr not mem-mapped\n"); return -EINVAL; } if (ioread32(&rh->magic) != VNIC_RES_MAGIC || ioread32(&rh->version) != VNIC_RES_VERSION) { printk(KERN_ERR "vNIC BAR0 res magic/version error " "exp (%lx/%lx) curr (%x/%x)\n", VNIC_RES_MAGIC, VNIC_RES_VERSION, ioread32(&rh->magic), ioread32(&rh->version)); return -EINVAL; } r = (struct vnic_resource __iomem *)(rh + 1); while ((type = ioread8(&r->type)) != RES_TYPE_EOL) { u8 bar_num = ioread8(&r->bar); u32 bar_offset = ioread32(&r->bar_offset); u32 count = ioread32(&r->count); u32 len; r++; if (bar_num != 0) /* only mapping in BAR0 resources */ continue; switch (type) { case RES_TYPE_WQ: case RES_TYPE_RQ: case RES_TYPE_CQ: case RES_TYPE_INTR_CTRL: /* each count is stride bytes long */ len = count * VNIC_RES_STRIDE; if (len + bar_offset > bar->len) { printk(KERN_ERR "vNIC BAR0 resource %d " "out-of-bounds, offset 0x%x + " "size 0x%x > bar len 0x%lx\n", type, bar_offset, len, bar->len); return -EINVAL; } break; case RES_TYPE_INTR_PBA_LEGACY: case RES_TYPE_DEVCMD2: case RES_TYPE_DEVCMD: len = count; break; default: continue; } vdev->res[type].count = count; vdev->res[type].vaddr = (char __iomem *)bar->vaddr + bar_offset; } return 0; } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev, enum vnic_res_type type) { return vdev->res[type].count; } void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type, unsigned int index) { if (!vdev->res[type].vaddr) return NULL; switch (type) { case RES_TYPE_WQ: case RES_TYPE_RQ: case RES_TYPE_CQ: case RES_TYPE_INTR_CTRL: return (char __iomem *)vdev->res[type].vaddr + index * VNIC_RES_STRIDE; default: return (char __iomem *)vdev->res[type].vaddr; } } unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring, unsigned int desc_count, unsigned int desc_size) { /* The base address of the desc rings must be 512 byte aligned. * Descriptor count is aligned to groups of 32 descriptors. A * count of 0 means the maximum 4096 descriptors. Descriptor * size is aligned to 16 bytes. */ unsigned int count_align = 32; unsigned int desc_align = 16; ring->base_align = 512; if (desc_count == 0) desc_count = 4096; ring->desc_count = ALIGN(desc_count, count_align); ring->desc_size = ALIGN(desc_size, desc_align); ring->size = ring->desc_count * ring->desc_size; ring->size_unaligned = ring->size + ring->base_align; return ring->size_unaligned; } void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring) { memset(ring->descs, 0, ring->size); } int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring, unsigned int desc_count, unsigned int desc_size) { vnic_dev_desc_ring_size(ring, desc_count, desc_size); ring->descs_unaligned = dma_alloc_coherent(&vdev->pdev->dev, ring->size_unaligned, &ring->base_addr_unaligned, GFP_KERNEL); if (!ring->descs_unaligned) { printk(KERN_ERR "Failed to allocate ring (size=%d), aborting\n", (int)ring->size); return -ENOMEM; } ring->base_addr = ALIGN(ring->base_addr_unaligned, ring->base_align); ring->descs = (u8 *)ring->descs_unaligned + (ring->base_addr - ring->base_addr_unaligned); vnic_dev_clear_desc_ring(ring); ring->desc_avail = ring->desc_count - 1; return 0; } void vnic_dev_free_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring) { if (ring->descs) { dma_free_coherent(&vdev->pdev->dev, ring->size_unaligned, ring->descs_unaligned, ring->base_addr_unaligned); ring->descs = NULL; } } static int vnic_dev_cmd1(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, int wait) { struct vnic_devcmd __iomem *devcmd = vdev->devcmd; int delay; u32 status; static const int dev_cmd_err[] = { /* convert from fw's version of error.h to host's version */ 0, /* ERR_SUCCESS */ EINVAL, /* ERR_EINVAL */ EFAULT, /* ERR_EFAULT */ EPERM, /* ERR_EPERM */ EBUSY, /* ERR_EBUSY */ }; int err; u64 *a0 = &vdev->args[0]; u64 *a1 = &vdev->args[1]; status = ioread32(&devcmd->status); if (status & STAT_BUSY) { printk(KERN_ERR "Busy devcmd %d\n", _CMD_N(cmd)); return -EBUSY; } if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) { writeq(*a0, &devcmd->args[0]); writeq(*a1, &devcmd->args[1]); wmb(); } iowrite32(cmd, &devcmd->cmd); if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT)) return 0; for (delay = 0; delay < wait; delay++) { udelay(100); status = ioread32(&devcmd->status); if (!(status & STAT_BUSY)) { if (status & STAT_ERROR) { err = dev_cmd_err[(int)readq(&devcmd->args[0])]; printk(KERN_ERR "Error %d devcmd %d\n", err, _CMD_N(cmd)); return -err; } if (_CMD_DIR(cmd) & _CMD_DIR_READ) { rmb(); *a0 = readq(&devcmd->args[0]); *a1 = readq(&devcmd->args[1]); } return 0; } } printk(KERN_ERR "Timedout devcmd %d\n", _CMD_N(cmd)); return -ETIMEDOUT; } static int vnic_dev_cmd2(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, int wait) { struct devcmd2_controller *dc2c = vdev->devcmd2; struct devcmd2_result *result; u8 color; unsigned int i; int delay; int err; u32 fetch_index; u32 posted; u32 new_posted; posted = ioread32(&dc2c->wq_ctrl->posted_index); fetch_index = ioread32(&dc2c->wq_ctrl->fetch_index); if (posted == 0xFFFFFFFF || fetch_index == 0xFFFFFFFF) { /* Hardware surprise removal: return error */ pr_err("%s: devcmd2 invalid posted or fetch index on cmd %d\n", pci_name(vdev->pdev), _CMD_N(cmd)); pr_err("%s: fetch index: %u, posted index: %u\n", pci_name(vdev->pdev), fetch_index, posted); return -ENODEV; } new_posted = (posted + 1) % DEVCMD2_RING_SIZE; if (new_posted == fetch_index) { pr_err("%s: devcmd2 wq full while issuing cmd %d\n", pci_name(vdev->pdev), _CMD_N(cmd)); pr_err("%s: fetch index: %u, posted index: %u\n", pci_name(vdev->pdev), fetch_index, posted); return -EBUSY; } dc2c->cmd_ring[posted].cmd = cmd; dc2c->cmd_ring[posted].flags = 0; if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT)) dc2c->cmd_ring[posted].flags |= DEVCMD2_FNORESULT; if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) { for (i = 0; i < VNIC_DEVCMD_NARGS; i++) dc2c->cmd_ring[posted].args[i] = vdev->args[i]; } /* Adding write memory barrier prevents compiler and/or CPU * reordering, thus avoiding descriptor posting before * descriptor is initialized. Otherwise, hardware can read * stale descriptor fields. */ wmb(); iowrite32(new_posted, &dc2c->wq_ctrl->posted_index); if (dc2c->cmd_ring[posted].flags & DEVCMD2_FNORESULT) return 0; result = dc2c->result + dc2c->next_result; color = dc2c->color; dc2c->next_result++; if (dc2c->next_result == dc2c->result_size) { dc2c->next_result = 0; dc2c->color = dc2c->color ? 0 : 1; } for (delay = 0; delay < wait; delay++) { udelay(100); if (result->color == color) { if (result->error) { err = -(int) result->error; if (err != ERR_ECMDUNKNOWN || cmd != CMD_CAPABILITY) pr_err("%s:Error %d devcmd %d\n", pci_name(vdev->pdev), err, _CMD_N(cmd)); return err; } if (_CMD_DIR(cmd) & _CMD_DIR_READ) { rmb(); /*prevent reorder while reding result*/ for (i = 0; i < VNIC_DEVCMD_NARGS; i++) vdev->args[i] = result->results[i]; } return 0; } } pr_err("%s:Timed out devcmd %d\n", pci_name(vdev->pdev), _CMD_N(cmd)); return -ETIMEDOUT; } static int vnic_dev_init_devcmd1(struct vnic_dev *vdev) { vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0); if (!vdev->devcmd) return -ENODEV; vdev->devcmd_rtn = &vnic_dev_cmd1; return 0; } static int vnic_dev_init_devcmd2(struct vnic_dev *vdev) { int err; unsigned int fetch_index; if (vdev->devcmd2) return 0; vdev->devcmd2 = kzalloc(sizeof(*vdev->devcmd2), GFP_ATOMIC); if (!vdev->devcmd2) return -ENOMEM; vdev->devcmd2->color = 1; vdev->devcmd2->result_size = DEVCMD2_RING_SIZE; err = vnic_wq_devcmd2_alloc(vdev, &vdev->devcmd2->wq, DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE); if (err) goto err_free_devcmd2; fetch_index = ioread32(&vdev->devcmd2->wq.ctrl->fetch_index); if (fetch_index == 0xFFFFFFFF) { /* check for hardware gone */ pr_err("error in devcmd2 init"); err = -ENODEV; goto err_free_wq; } /* * Don't change fetch_index ever and * set posted_index same as fetch_index * when setting up the WQ for devcmd2. */ vnic_wq_init_start(&vdev->devcmd2->wq, 0, fetch_index, fetch_index, 0, 0); vnic_wq_enable(&vdev->devcmd2->wq); err = vnic_dev_alloc_desc_ring(vdev, &vdev->devcmd2->results_ring, DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE); if (err) goto err_disable_wq; vdev->devcmd2->result = (struct devcmd2_result *) vdev->devcmd2->results_ring.descs; vdev->devcmd2->cmd_ring = (struct vnic_devcmd2 *) vdev->devcmd2->wq.ring.descs; vdev->devcmd2->wq_ctrl = vdev->devcmd2->wq.ctrl; vdev->args[0] = (u64) vdev->devcmd2->results_ring.base_addr | VNIC_PADDR_TARGET; vdev->args[1] = DEVCMD2_RING_SIZE; err = vnic_dev_cmd2(vdev, CMD_INITIALIZE_DEVCMD2, 1000); if (err) goto err_free_desc_ring; vdev->devcmd_rtn = &vnic_dev_cmd2; return 0; err_free_desc_ring: vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring); err_disable_wq: vnic_wq_disable(&vdev->devcmd2->wq); err_free_wq: vnic_wq_free(&vdev->devcmd2->wq); err_free_devcmd2: kfree(vdev->devcmd2); vdev->devcmd2 = NULL; return err; } static void vnic_dev_deinit_devcmd2(struct vnic_dev *vdev) { vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring); vnic_wq_disable(&vdev->devcmd2->wq); vnic_wq_free(&vdev->devcmd2->wq); kfree(vdev->devcmd2); vdev->devcmd2 = NULL; vdev->devcmd_rtn = &vnic_dev_cmd1; } static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait) { int err; vdev->args[0] = *a0; vdev->args[1] = *a1; err = (*vdev->devcmd_rtn)(vdev, cmd, wait); *a0 = vdev->args[0]; *a1 = vdev->args[1]; return err; } int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait) { memset(vdev->args, 0, sizeof(vdev->args)); switch (vdev->proxy) { case PROXY_NONE: default: return vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait); } } int vnic_dev_fw_info(struct vnic_dev *vdev, struct vnic_devcmd_fw_info **fw_info) { u64 a0, a1 = 0; int wait = 1000; int err = 0; if (!vdev->fw_info) { vdev->fw_info = dma_alloc_coherent(&vdev->pdev->dev, sizeof(struct vnic_devcmd_fw_info), &vdev->fw_info_pa, GFP_KERNEL); if (!vdev->fw_info) return -ENOMEM; a0 = vdev->fw_info_pa; /* only get fw_info once and cache it */ err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO, &a0, &a1, wait); } *fw_info = vdev->fw_info; return err; } int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size, void *value) { u64 a0, a1; int wait = 1000; int err; a0 = offset; a1 = size; err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait); switch (size) { case 1: *(u8 *)value = (u8)a0; break; case 2: *(u16 *)value = (u16)a0; break; case 4: *(u32 *)value = (u32)a0; break; case 8: *(u64 *)value = a0; break; default: BUG(); break; } return err; } int vnic_dev_stats_clear(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_STATS_CLEAR, &a0, &a1, wait); } int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats) { u64 a0, a1; int wait = 1000; if (!vdev->stats) { vdev->stats = dma_alloc_coherent(&vdev->pdev->dev, sizeof(struct vnic_stats), &vdev->stats_pa, GFP_KERNEL); if (!vdev->stats) return -ENOMEM; } *stats = vdev->stats; a0 = vdev->stats_pa; a1 = sizeof(struct vnic_stats); return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait); } int vnic_dev_close(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait); } int vnic_dev_enable(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait); } int vnic_dev_disable(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait); } int vnic_dev_open(struct vnic_dev *vdev, int arg) { u64 a0 = (u32)arg, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait); } int vnic_dev_open_done(struct vnic_dev *vdev, int *done) { u64 a0 = 0, a1 = 0; int wait = 1000; int err; *done = 0; err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait); if (err) return err; *done = (a0 == 0); return 0; } int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg) { u64 a0 = (u32)arg, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_SOFT_RESET, &a0, &a1, wait); } int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done) { u64 a0 = 0, a1 = 0; int wait = 1000; int err; *done = 0; err = vnic_dev_cmd(vdev, CMD_SOFT_RESET_STATUS, &a0, &a1, wait); if (err) return err; *done = (a0 == 0); return 0; } int vnic_dev_hang_notify(struct vnic_dev *vdev) { u64 a0 = 0, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_HANG_NOTIFY, &a0, &a1, wait); } int vnic_dev_mac_addr(struct vnic_dev *vdev, u8 *mac_addr) { u64 a[2] = {}; int wait = 1000; int err, i; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = 0; err = vnic_dev_cmd(vdev, CMD_MAC_ADDR, &a[0], &a[1], wait); if (err) return err; for (i = 0; i < ETH_ALEN; i++) mac_addr[i] = ((u8 *)&a)[i]; return 0; } void vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast, int broadcast, int promisc, int allmulti) { u64 a0, a1 = 0; int wait = 1000; int err; a0 = (directed ? CMD_PFILTER_DIRECTED : 0) | (multicast ? CMD_PFILTER_MULTICAST : 0) | (broadcast ? CMD_PFILTER_BROADCAST : 0) | (promisc ? CMD_PFILTER_PROMISCUOUS : 0) | (allmulti ? CMD_PFILTER_ALL_MULTICAST : 0); err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait); if (err) printk(KERN_ERR "Can't set packet filter\n"); } void vnic_dev_add_addr(struct vnic_dev *vdev, u8 *addr) { u64 a[2] = {}; int wait = 1000; int err; int i; for (i = 0; i < ETH_ALEN; i++) ((u8 *)&a)[i] = addr[i]; err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a[0], &a[1], wait); if (err) pr_err("Can't add addr [%pM], %d\n", addr, err); } void vnic_dev_del_addr(struct vnic_dev *vdev, u8 *addr) { u64 a[2] = {}; int wait = 1000; int err; int i; for (i = 0; i < ETH_ALEN; i++) ((u8 *)&a)[i] = addr[i]; err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a[0], &a[1], wait); if (err) pr_err("Can't del addr [%pM], %d\n", addr, err); } int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr) { u64 a0, a1; int wait = 1000; if (!vdev->notify) { vdev->notify = dma_alloc_coherent(&vdev->pdev->dev, sizeof(struct vnic_devcmd_notify), &vdev->notify_pa, GFP_KERNEL); if (!vdev->notify) return -ENOMEM; } a0 = vdev->notify_pa; a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL; a1 += sizeof(struct vnic_devcmd_notify); return vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); } void vnic_dev_notify_unset(struct vnic_dev *vdev) { u64 a0, a1; int wait = 1000; a0 = 0; /* paddr = 0 to unset notify buffer */ a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */ a1 += sizeof(struct vnic_devcmd_notify); vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait); } static int vnic_dev_notify_ready(struct vnic_dev *vdev) { u32 *words; unsigned int nwords = sizeof(struct vnic_devcmd_notify) / 4; unsigned int i; u32 csum; if (!vdev->notify) return 0; do { csum = 0; memcpy(&vdev->notify_copy, vdev->notify, sizeof(struct vnic_devcmd_notify)); words = (u32 *)&vdev->notify_copy; for (i = 1; i < nwords; i++) csum += words[i]; } while (csum != words[0]); return 1; } int vnic_dev_init(struct vnic_dev *vdev, int arg) { u64 a0 = (u32)arg, a1 = 0; int wait = 1000; return vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait); } u16 vnic_dev_set_default_vlan(struct vnic_dev *vdev, u16 new_default_vlan) { u64 a0 = new_default_vlan, a1 = 0; int wait = 1000; int old_vlan = 0; old_vlan = vnic_dev_cmd(vdev, CMD_SET_DEFAULT_VLAN, &a0, &a1, wait); return (u16)old_vlan; } int vnic_dev_link_status(struct vnic_dev *vdev) { if (vdev->linkstatus) return *vdev->linkstatus; if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.link_state; } u32 vnic_dev_port_speed(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.port_speed; } u32 vnic_dev_msg_lvl(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.msglvl; } u32 vnic_dev_mtu(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.mtu; } u32 vnic_dev_link_down_cnt(struct vnic_dev *vdev) { if (!vnic_dev_notify_ready(vdev)) return 0; return vdev->notify_copy.link_down_cnt; } void vnic_dev_set_intr_mode(struct vnic_dev *vdev, enum vnic_dev_intr_mode intr_mode) { vdev->intr_mode = intr_mode; } enum vnic_dev_intr_mode vnic_dev_get_intr_mode( struct vnic_dev *vdev) { return vdev->intr_mode; } void vnic_dev_unregister(struct vnic_dev *vdev) { if (vdev) { if (vdev->notify) dma_free_coherent(&vdev->pdev->dev, sizeof(struct vnic_devcmd_notify), vdev->notify, vdev->notify_pa); if (vdev->linkstatus) dma_free_coherent(&vdev->pdev->dev, sizeof(u32), vdev->linkstatus, vdev->linkstatus_pa); if (vdev->stats) dma_free_coherent(&vdev->pdev->dev, sizeof(struct vnic_stats), vdev->stats, vdev->stats_pa); if (vdev->fw_info) dma_free_coherent(&vdev->pdev->dev, sizeof(struct vnic_devcmd_fw_info), vdev->fw_info, vdev->fw_info_pa); if (vdev->devcmd2) vnic_dev_deinit_devcmd2(vdev); kfree(vdev); } } struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev, void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar) { if (!vdev) { vdev = kzalloc(sizeof(struct vnic_dev), GFP_KERNEL); if (!vdev) return NULL; } vdev->priv = priv; vdev->pdev = pdev; if (vnic_dev_discover_res(vdev, bar)) goto err_out; return vdev; err_out: vnic_dev_unregister(vdev); return NULL; } int vnic_dev_cmd_init(struct vnic_dev *vdev) { int err; void *p; p = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD2, 0); if (p) { pr_err("fnic: DEVCMD2 resource found!\n"); err = vnic_dev_init_devcmd2(vdev); } else { pr_err("fnic: DEVCMD2 not found, fall back to Devcmd\n"); err = vnic_dev_init_devcmd1(vdev); } return err; }