 44fa20c928
			
		
	
	
		44fa20c928
		
	
	
	
	
		
			
			NVLink2 support was removed from the PPC PowerNV platform and VFIO in
Linux 5.13 with commits :
  562d1e207d32 ("powerpc/powernv: remove the nvlink support")
  b392a1989170 ("vfio/pci: remove vfio_pci_nvlink2")
This was 2.5 years ago. Do the same in QEMU with a revert of commit
ec132efaa81f ("spapr: Support NVIDIA V100 GPU with NVLink2"). Some
adjustements are required on the NUMA part.
Cc: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Cédric Le Goater <clg@redhat.com>
Message-ID: <20230918091717.149950-1-clg@kaod.org>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
		
	
			
		
			
				
	
	
		
			663 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			663 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
 | |
|  *
 | |
|  * Copyright IBM Corp. 2020
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Daniel Henrique Barboza      <danielhb413@gmail.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "hw/ppc/spapr_numa.h"
 | |
| #include "hw/pci-host/spapr.h"
 | |
| #include "hw/ppc/fdt.h"
 | |
| 
 | |
| /* Moved from hw/ppc/spapr_pci_nvlink2.c */
 | |
| #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1))
 | |
| 
 | |
| /*
 | |
|  * Retrieves max_dist_ref_points of the current NUMA affinity.
 | |
|  */
 | |
| static int get_max_dist_ref_points(SpaprMachineState *spapr)
 | |
| {
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 | |
|         return FORM2_DIST_REF_POINTS;
 | |
|     }
 | |
| 
 | |
|     return FORM1_DIST_REF_POINTS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieves numa_assoc_size of the current NUMA affinity.
 | |
|  */
 | |
| static int get_numa_assoc_size(SpaprMachineState *spapr)
 | |
| {
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 | |
|         return FORM2_NUMA_ASSOC_SIZE;
 | |
|     }
 | |
| 
 | |
|     return FORM1_NUMA_ASSOC_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieves vcpu_assoc_size of the current NUMA affinity.
 | |
|  *
 | |
|  * vcpu_assoc_size is the size of ibm,associativity array
 | |
|  * for CPUs, which has an extra element (vcpu_id) in the end.
 | |
|  */
 | |
| static int get_vcpu_assoc_size(SpaprMachineState *spapr)
 | |
| {
 | |
|     return get_numa_assoc_size(spapr) + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retrieves the ibm,associativity array of NUMA node 'node_id'
 | |
|  * for the current NUMA affinity.
 | |
|  */
 | |
| static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
 | |
| {
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 | |
|         return spapr->FORM2_assoc_array[node_id];
 | |
|     }
 | |
|     return spapr->FORM1_assoc_array[node_id];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper that returns node distance from ms->numa_state->nodes
 | |
|  * after handling edge cases where the distance might be absent.
 | |
|  */
 | |
| static int get_numa_distance(MachineState *ms, int src, int dst)
 | |
| {
 | |
|     NodeInfo *numa_info = ms->numa_state->nodes;
 | |
|     int ret = numa_info[src].distance[dst];
 | |
| 
 | |
|     if (ret != 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In case QEMU adds a default NUMA single node when the user
 | |
|      * did not add any, or where the user did not supply distances,
 | |
|      * the distance will be absent (zero). Return local/remote
 | |
|      * distance in this case.
 | |
|      */
 | |
|     if (src == dst) {
 | |
|         return NUMA_DISTANCE_MIN;
 | |
|     }
 | |
| 
 | |
|     return NUMA_DISTANCE_DEFAULT;
 | |
| }
 | |
| 
 | |
| static bool spapr_numa_is_symmetrical(MachineState *ms)
 | |
| {
 | |
|     int nb_numa_nodes = ms->numa_state->num_nodes;
 | |
|     int src, dst;
 | |
| 
 | |
|     for (src = 0; src < nb_numa_nodes; src++) {
 | |
|         for (dst = src; dst < nb_numa_nodes; dst++) {
 | |
|             if (get_numa_distance(ms, src, dst) !=
 | |
|                 get_numa_distance(ms, dst, src)) {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function will translate the user distances into
 | |
|  * what the kernel understand as possible values: 10
 | |
|  * (local distance), 20, 40, 80 and 160, and return the equivalent
 | |
|  * NUMA level for each. Current heuristic is:
 | |
|  *  - local distance (10) returns numa_level = 0x4, meaning there is
 | |
|  *    no rounding for local distance
 | |
|  *  - distances between 11 and 30 inclusive -> rounded to 20,
 | |
|  *    numa_level = 0x3
 | |
|  *  - distances between 31 and 60 inclusive -> rounded to 40,
 | |
|  *    numa_level = 0x2
 | |
|  *  - distances between 61 and 120 inclusive -> rounded to 80,
 | |
|  *    numa_level = 0x1
 | |
|  *  - everything above 120 returns numa_level = 0 to indicate that
 | |
|  *    there is no match. This will be calculated as disntace = 160
 | |
|  *    by the kernel (as of v5.9)
 | |
|  */
 | |
| static uint8_t spapr_numa_get_numa_level(uint8_t distance)
 | |
| {
 | |
|     if (distance == 10) {
 | |
|         return 0x4;
 | |
|     } else if (distance > 11 && distance <= 30) {
 | |
|         return 0x3;
 | |
|     } else if (distance > 31 && distance <= 60) {
 | |
|         return 0x2;
 | |
|     } else if (distance > 61 && distance <= 120) {
 | |
|         return 0x1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     int nb_numa_nodes = ms->numa_state->num_nodes;
 | |
|     int src, dst, i, j;
 | |
| 
 | |
|     /*
 | |
|      * Fill all associativity domains of non-zero NUMA nodes with
 | |
|      * node_id. This is required because the default value (0) is
 | |
|      * considered a match with associativity domains of node 0.
 | |
|      */
 | |
|     for (i = 1; i < nb_numa_nodes; i++) {
 | |
|         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
 | |
|             spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (src = 0; src < nb_numa_nodes; src++) {
 | |
|         for (dst = src; dst < nb_numa_nodes; dst++) {
 | |
|             /*
 | |
|              * This is how the associativity domain between A and B
 | |
|              * is calculated:
 | |
|              *
 | |
|              * - get the distance D between them
 | |
|              * - get the correspondent NUMA level 'n_level' for D
 | |
|              * - all associativity arrays were initialized with their own
 | |
|              * numa_ids, and we're calculating the distance in node_id
 | |
|              * ascending order, starting from node id 0 (the first node
 | |
|              * retrieved by numa_state). This will have a cascade effect in
 | |
|              * the algorithm because the associativity domains that node 0
 | |
|              * defines will be carried over to other nodes, and node 1
 | |
|              * associativities will be carried over after taking node 0
 | |
|              * associativities into account, and so on. This happens because
 | |
|              * we'll assign assoc_src as the associativity domain of dst
 | |
|              * as well, for all NUMA levels beyond and including n_level.
 | |
|              *
 | |
|              * The PPC kernel expects the associativity domains of node 0 to
 | |
|              * be always 0, and this algorithm will grant that by default.
 | |
|              */
 | |
|             uint8_t distance = get_numa_distance(ms, src, dst);
 | |
|             uint8_t n_level = spapr_numa_get_numa_level(distance);
 | |
|             uint32_t assoc_src;
 | |
| 
 | |
|             /*
 | |
|              * n_level = 0 means that the distance is greater than our last
 | |
|              * rounded value (120). In this case there is no NUMA level match
 | |
|              * between src and dst and we can skip the remaining of the loop.
 | |
|              *
 | |
|              * The Linux kernel will assume that the distance between src and
 | |
|              * dst, in this case of no match, is 10 (local distance) doubled
 | |
|              * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
 | |
|              * levels (4), so this gives us 10*2*2*2*2 = 160.
 | |
|              *
 | |
|              * This logic can be seen in the Linux kernel source code, as of
 | |
|              * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
 | |
|              */
 | |
|             if (n_level == 0) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * We must assign all assoc_src to dst, starting from n_level
 | |
|              * and going up to 0x1.
 | |
|              */
 | |
|             for (i = n_level; i > 0; i--) {
 | |
|                 assoc_src = spapr->FORM1_assoc_array[src][i];
 | |
|                 spapr->FORM1_assoc_array[dst][i] = assoc_src;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static void spapr_numa_FORM1_affinity_check(MachineState *machine)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /*
 | |
|      * Check we don't have a memory-less/cpu-less NUMA node
 | |
|      * Firmware relies on the existing memory/cpu topology to provide the
 | |
|      * NUMA topology to the kernel.
 | |
|      * And the linux kernel needs to know the NUMA topology at start
 | |
|      * to be able to hotplug CPUs later.
 | |
|      */
 | |
|     if (machine->numa_state->num_nodes) {
 | |
|         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
 | |
|             /* check for memory-less node */
 | |
|             if (machine->numa_state->nodes[i].node_mem == 0) {
 | |
|                 CPUState *cs;
 | |
|                 int found = 0;
 | |
|                 /* check for cpu-less node */
 | |
|                 CPU_FOREACH(cs) {
 | |
|                     PowerPCCPU *cpu = POWERPC_CPU(cs);
 | |
|                     if (cpu->node_id == i) {
 | |
|                         found = 1;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 /* memory-less and cpu-less node */
 | |
|                 if (!found) {
 | |
|                     error_report(
 | |
| "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
 | |
|                     exit(EXIT_FAILURE);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!spapr_numa_is_symmetrical(machine)) {
 | |
|         error_report(
 | |
| "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set NUMA machine state data based on FORM1 affinity semantics.
 | |
|  */
 | |
| static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
 | |
|                                            MachineState *machine)
 | |
| {
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     int nb_numa_nodes = machine->numa_state->num_nodes;
 | |
|     int i, j;
 | |
| 
 | |
|     /*
 | |
|      * For all associativity arrays: first position is the size,
 | |
|      * position FORM1_DIST_REF_POINTS is always the numa_id,
 | |
|      * represented by the index 'i'.
 | |
|      *
 | |
|      * This will break on sparse NUMA setups, when/if QEMU starts
 | |
|      * to support it, because there will be no more guarantee that
 | |
|      * 'i' will be a valid node_id set by the user.
 | |
|      */
 | |
|     for (i = 0; i < nb_numa_nodes; i++) {
 | |
|         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
 | |
|         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
 | |
|     }
 | |
| 
 | |
|     for (i = nb_numa_nodes; i < nb_numa_nodes; i++) {
 | |
|         spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
 | |
| 
 | |
|         for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
 | |
|             uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
 | |
|                                  SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
 | |
|             spapr->FORM1_assoc_array[i][j] = gpu_assoc;
 | |
|         }
 | |
| 
 | |
|         spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Guests pseries-5.1 and older uses zeroed associativity domains,
 | |
|      * i.e. no domain definition based on NUMA distance input.
 | |
|      *
 | |
|      * Same thing with guests that have only one NUMA node.
 | |
|      */
 | |
|     if (smc->pre_5_2_numa_associativity ||
 | |
|         machine->numa_state->num_nodes <= 1) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     spapr_numa_define_FORM1_domains(spapr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Init NUMA FORM2 machine state data
 | |
|  */
 | |
| static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     /*
 | |
|      * For all resources but CPUs, FORM2 associativity arrays will
 | |
|      * be a size 2 array with the following format:
 | |
|      *
 | |
|      * ibm,associativity = {1, numa_id}
 | |
|      *
 | |
|      * CPUs will write an additional 'vcpu_id' on top of the arrays
 | |
|      * being initialized here. 'numa_id' is represented by the
 | |
|      * index 'i' of the loop.
 | |
|      */
 | |
|     for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
 | |
|         spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
 | |
|         spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void spapr_numa_associativity_init(SpaprMachineState *spapr,
 | |
|                                    MachineState *machine)
 | |
| {
 | |
|     spapr_numa_FORM1_affinity_init(spapr, machine);
 | |
|     spapr_numa_FORM2_affinity_init(spapr);
 | |
| }
 | |
| 
 | |
| void spapr_numa_associativity_check(SpaprMachineState *spapr)
 | |
| {
 | |
|     /*
 | |
|      * FORM2 does not have any restrictions we need to handle
 | |
|      * at CAS time, for now.
 | |
|      */
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     spapr_numa_FORM1_affinity_check(MACHINE(spapr));
 | |
| }
 | |
| 
 | |
| void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
 | |
|                                        int offset, int nodeid)
 | |
| {
 | |
|     const uint32_t *associativity = get_associativity(spapr, nodeid);
 | |
| 
 | |
|     _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
 | |
|                       associativity,
 | |
|                       get_numa_assoc_size(spapr) * sizeof(uint32_t))));
 | |
| }
 | |
| 
 | |
| static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
 | |
|                                            PowerPCCPU *cpu)
 | |
| {
 | |
|     const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
 | |
|     int max_distance_ref_points = get_max_dist_ref_points(spapr);
 | |
|     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 | |
|     uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
 | |
|     int index = spapr_get_vcpu_id(cpu);
 | |
| 
 | |
|     /*
 | |
|      * VCPUs have an extra 'cpu_id' value in ibm,associativity
 | |
|      * compared to other resources. Increment the size at index
 | |
|      * 0, put cpu_id last, then copy the remaining associativity
 | |
|      * domains.
 | |
|      */
 | |
|     vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
 | |
|     vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
 | |
|     memcpy(vcpu_assoc + 1, associativity + 1,
 | |
|            (vcpu_assoc_size - 2) * sizeof(uint32_t));
 | |
| 
 | |
|     return vcpu_assoc;
 | |
| }
 | |
| 
 | |
| int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
 | |
|                             int offset, PowerPCCPU *cpu)
 | |
| {
 | |
|     g_autofree uint32_t *vcpu_assoc = NULL;
 | |
|     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 | |
| 
 | |
|     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
 | |
| 
 | |
|     /* Advertise NUMA via ibm,associativity */
 | |
|     return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
 | |
|                        vcpu_assoc_size * sizeof(uint32_t));
 | |
| }
 | |
| 
 | |
| 
 | |
| int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
 | |
|                                          int offset)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     int max_distance_ref_points = get_max_dist_ref_points(spapr);
 | |
|     int nb_numa_nodes = machine->numa_state->num_nodes;
 | |
|     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 | |
|     g_autofree uint32_t *int_buf = NULL;
 | |
|     uint32_t *cur_index;
 | |
|     int i;
 | |
| 
 | |
|     /* ibm,associativity-lookup-arrays */
 | |
|     int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2);
 | |
|     cur_index = int_buf;
 | |
|     int_buf[0] = cpu_to_be32(nr_nodes);
 | |
|      /* Number of entries per associativity list */
 | |
|     int_buf[1] = cpu_to_be32(max_distance_ref_points);
 | |
|     cur_index += 2;
 | |
|     for (i = 0; i < nr_nodes; i++) {
 | |
|         /*
 | |
|          * For the lookup-array we use the ibm,associativity array of the
 | |
|          * current NUMA affinity, without the first element (size).
 | |
|          */
 | |
|         const uint32_t *associativity = get_associativity(spapr, i);
 | |
|         memcpy(cur_index, ++associativity,
 | |
|                sizeof(uint32_t) * max_distance_ref_points);
 | |
|         cur_index += max_distance_ref_points;
 | |
|     }
 | |
| 
 | |
|     return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays",
 | |
|                        int_buf, (cur_index - int_buf) * sizeof(uint32_t));
 | |
| }
 | |
| 
 | |
| static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
 | |
|                                            void *fdt, int rtas)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     uint32_t refpoints[] = {
 | |
|         cpu_to_be32(0x4),
 | |
|         cpu_to_be32(0x3),
 | |
|         cpu_to_be32(0x2),
 | |
|         cpu_to_be32(0x1),
 | |
|     };
 | |
|     uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
 | |
|     uint32_t maxdomain = ms->numa_state->num_nodes;
 | |
|     uint32_t maxdomains[] = {
 | |
|         cpu_to_be32(4),
 | |
|         cpu_to_be32(maxdomain),
 | |
|         cpu_to_be32(maxdomain),
 | |
|         cpu_to_be32(maxdomain),
 | |
|         cpu_to_be32(maxdomain)
 | |
|     };
 | |
| 
 | |
|     if (smc->pre_5_2_numa_associativity ||
 | |
|         ms->numa_state->num_nodes <= 1) {
 | |
|         uint32_t legacy_refpoints[] = {
 | |
|             cpu_to_be32(0x4),
 | |
|             cpu_to_be32(0x4),
 | |
|             cpu_to_be32(0x2),
 | |
|         };
 | |
|         uint32_t legacy_maxdomains[] = {
 | |
|             cpu_to_be32(4),
 | |
|             cpu_to_be32(0),
 | |
|             cpu_to_be32(0),
 | |
|             cpu_to_be32(0),
 | |
|             cpu_to_be32(maxdomain ? maxdomain : 1),
 | |
|         };
 | |
| 
 | |
|         G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
 | |
|         G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
 | |
| 
 | |
|         nr_refpoints = 3;
 | |
| 
 | |
|         memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
 | |
|         memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
 | |
| 
 | |
|         /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
 | |
|         if (smc->pre_5_1_assoc_refpoints) {
 | |
|             nr_refpoints = 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 | |
|                      refpoints, nr_refpoints * sizeof(refpoints[0])));
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 | |
|                      maxdomains, sizeof(maxdomains)));
 | |
| }
 | |
| 
 | |
| static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
 | |
|                                                void *fdt, int rtas)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
|     int nb_numa_nodes = ms->numa_state->num_nodes;
 | |
|     int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
 | |
|     g_autofree uint32_t *lookup_index_table = NULL;
 | |
|     g_autofree uint8_t *distance_table = NULL;
 | |
|     int src, dst, i, distance_table_size;
 | |
| 
 | |
|     /*
 | |
|      * ibm,numa-lookup-index-table: array with length and a
 | |
|      * list of NUMA ids present in the guest.
 | |
|      */
 | |
|     lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
 | |
|     lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
 | |
| 
 | |
|     for (i = 0; i < nb_numa_nodes; i++) {
 | |
|         lookup_index_table[i + 1] = cpu_to_be32(i);
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
 | |
|                      lookup_index_table,
 | |
|                      (nb_numa_nodes + 1) * sizeof(uint32_t)));
 | |
| 
 | |
|     /*
 | |
|      * ibm,numa-distance-table: contains all node distances. First
 | |
|      * element is the size of the table as uint32, followed up
 | |
|      * by all the uint8 distances from the first NUMA node, then all
 | |
|      * distances from the second NUMA node and so on.
 | |
|      *
 | |
|      * ibm,numa-lookup-index-table is used by guest to navigate this
 | |
|      * array because NUMA ids can be sparse (node 0 is the first,
 | |
|      * node 8 is the second ...).
 | |
|      */
 | |
|     distance_table_size = distance_table_entries * sizeof(uint8_t) +
 | |
|                           sizeof(uint32_t);
 | |
|     distance_table = g_new0(uint8_t, distance_table_size);
 | |
|     stl_be_p(distance_table, distance_table_entries);
 | |
| 
 | |
|     /* Skip the uint32_t array length at the start */
 | |
|     i = sizeof(uint32_t);
 | |
| 
 | |
|     for (src = 0; src < nb_numa_nodes; src++) {
 | |
|         for (dst = 0; dst < nb_numa_nodes; dst++) {
 | |
|             distance_table[i++] = get_numa_distance(ms, src, dst);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
 | |
|                      distance_table, distance_table_size));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This helper could be compressed in a single function with
 | |
|  * FORM1 logic since we're setting the same DT values, with the
 | |
|  * difference being a call to spapr_numa_FORM2_write_rtas_tables()
 | |
|  * in the end. The separation was made to avoid clogging FORM1 code
 | |
|  * which already has to deal with compat modes from previous
 | |
|  * QEMU machine types.
 | |
|  */
 | |
| static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
 | |
|                                            void *fdt, int rtas)
 | |
| {
 | |
|     MachineState *ms = MACHINE(spapr);
 | |
| 
 | |
|     /*
 | |
|      * In FORM2, ibm,associativity-reference-points will point to
 | |
|      * the element in the ibm,associativity array that contains the
 | |
|      * primary domain index (for FORM2, the first element).
 | |
|      *
 | |
|      * This value (in our case, the numa-id) is then used as an index
 | |
|      * to retrieve all other attributes of the node (distance,
 | |
|      * bandwidth, latency) via ibm,numa-lookup-index-table and other
 | |
|      * ibm,numa-*-table properties.
 | |
|      */
 | |
|     uint32_t refpoints[] = { cpu_to_be32(1) };
 | |
| 
 | |
|     uint32_t maxdomain = ms->numa_state->num_nodes;
 | |
|     uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 | |
|                      refpoints, sizeof(refpoints)));
 | |
| 
 | |
|     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
 | |
|                      maxdomains, sizeof(maxdomains)));
 | |
| 
 | |
|     spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper that writes ibm,associativity-reference-points and
 | |
|  * max-associativity-domains in the RTAS pointed by @rtas
 | |
|  * in the DT @fdt.
 | |
|  */
 | |
| void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
 | |
| {
 | |
|     if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
 | |
|         spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
 | |
| }
 | |
| 
 | |
| static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
 | |
|                                               SpaprMachineState *spapr,
 | |
|                                               target_ulong opcode,
 | |
|                                               target_ulong *args)
 | |
| {
 | |
|     g_autofree uint32_t *vcpu_assoc = NULL;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong procno = args[1];
 | |
|     PowerPCCPU *tcpu;
 | |
|     int idx, assoc_idx;
 | |
|     int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
 | |
| 
 | |
|     /* only support procno from H_REGISTER_VPA */
 | |
|     if (flags != 0x1) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     tcpu = spapr_find_cpu(procno);
 | |
|     if (tcpu == NULL) {
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Given that we want to be flexible with the sizes and indexes,
 | |
|      * we must consider that there is a hard limit of how many
 | |
|      * associativities domain we can fit in R4 up to R9, which would be
 | |
|      * 12 associativity domains for vcpus. Assert and bail if that's
 | |
|      * not the case.
 | |
|      */
 | |
|     g_assert((vcpu_assoc_size - 1) <= 12);
 | |
| 
 | |
|     vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
 | |
|     /* assoc_idx starts at 1 to skip associativity size */
 | |
|     assoc_idx = 1;
 | |
| 
 | |
| #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
 | |
|                              ((uint64_t)(b) & 0xffffffff))
 | |
| 
 | |
|     for (idx = 0; idx < 6; idx++) {
 | |
|         int32_t a, b;
 | |
| 
 | |
|         /*
 | |
|          * vcpu_assoc[] will contain the associativity domains for tcpu,
 | |
|          * including tcpu->node_id and procno, meaning that we don't
 | |
|          * need to use these variables here.
 | |
|          *
 | |
|          * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
 | |
|          * macro. The ternary will fill the remaining registers with -1
 | |
|          * after we went through vcpu_assoc[].
 | |
|          */
 | |
|         a = assoc_idx < vcpu_assoc_size ?
 | |
|             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 | |
|         b = assoc_idx < vcpu_assoc_size ?
 | |
|             be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
 | |
| 
 | |
|         args[idx] = ASSOCIATIVITY(a, b);
 | |
|     }
 | |
| #undef ASSOCIATIVITY
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void spapr_numa_register_types(void)
 | |
| {
 | |
|     /* Virtual Processor Home Node */
 | |
|     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
 | |
|                              h_home_node_associativity);
 | |
| }
 | |
| 
 | |
| type_init(spapr_numa_register_types)
 |