61 lines
2.3 KiB
Python
61 lines
2.3 KiB
Python
|
"""
|
||
|
==============================================
|
||
|
Plot randomly generated classification dataset
|
||
|
==============================================
|
||
|
|
||
|
This example plots several randomly generated classification datasets.
|
||
|
For easy visualization, all datasets have 2 features, plotted on the x and y
|
||
|
axis. The color of each point represents its class label.
|
||
|
|
||
|
The first 4 plots use the :func:`~sklearn.datasets.make_classification` with
|
||
|
different numbers of informative features, clusters per class and classes.
|
||
|
The final 2 plots use :func:`~sklearn.datasets.make_blobs` and
|
||
|
:func:`~sklearn.datasets.make_gaussian_quantiles`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from sklearn.datasets import make_blobs, make_classification, make_gaussian_quantiles
|
||
|
|
||
|
plt.figure(figsize=(8, 8))
|
||
|
plt.subplots_adjust(bottom=0.05, top=0.9, left=0.05, right=0.95)
|
||
|
|
||
|
plt.subplot(321)
|
||
|
plt.title("One informative feature, one cluster per class", fontsize="small")
|
||
|
X1, Y1 = make_classification(
|
||
|
n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1
|
||
|
)
|
||
|
plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k")
|
||
|
|
||
|
plt.subplot(322)
|
||
|
plt.title("Two informative features, one cluster per class", fontsize="small")
|
||
|
X1, Y1 = make_classification(
|
||
|
n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1
|
||
|
)
|
||
|
plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k")
|
||
|
|
||
|
plt.subplot(323)
|
||
|
plt.title("Two informative features, two clusters per class", fontsize="small")
|
||
|
X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2)
|
||
|
plt.scatter(X2[:, 0], X2[:, 1], marker="o", c=Y2, s=25, edgecolor="k")
|
||
|
|
||
|
plt.subplot(324)
|
||
|
plt.title("Multi-class, two informative features, one cluster", fontsize="small")
|
||
|
X1, Y1 = make_classification(
|
||
|
n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3
|
||
|
)
|
||
|
plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k")
|
||
|
|
||
|
plt.subplot(325)
|
||
|
plt.title("Three blobs", fontsize="small")
|
||
|
X1, Y1 = make_blobs(n_features=2, centers=3)
|
||
|
plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k")
|
||
|
|
||
|
plt.subplot(326)
|
||
|
plt.title("Gaussian divided into three quantiles", fontsize="small")
|
||
|
X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3)
|
||
|
plt.scatter(X1[:, 0], X1[:, 1], marker="o", c=Y1, s=25, edgecolor="k")
|
||
|
|
||
|
plt.show()
|